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Abstract

In many topics in political science, understanding survival time and failure rates of political processes
is crucial. Event history analysis in general offers a set of tools that allows us to assess whether a certain
political process is at risk of experiencing some failure at a given time point. In a previous work with
Jude Hays, we pointed out that the occurrence of multiple political events or a single political event
occurring to multiple units might be interdependent across events or units Hays and Kachi (2009). For
example, two political processes–cabinet formation duration and cabinet survival–might be endogenous
to each other when the intensity of formation negotiation depends on the parties’ anticipation about the
durability of the future government. At the same time, the very durability of a formed government also
reflects the diversity in parties’ preferences in the negotiation phase. To handle this interdependence
in the endogenous outcome variables, we developed an interdependent duration model, using a system
of simultaneous equations. However, the approach taken in the previous work lacked a procedure to
handle right-censored observations. The difficulty of writing the likelihood function with right-censored
data comes from the fact that deriving the joint cdf for the likelihood involves multiple integrals with
respect to all the duration variables. The joint cdf is necessary in order to define the joint survivor
function, through which censored observations can contribute information to the likelihood; however,
the aforementioned estimator was derived through an approach that obtained the joint pdf without the
joint cdf. In this project, I explore the use of copula functions to recover a joint cdf from a given joint
pdf in a relatively simple way. I evaluate the performance of my estimator by Monte Carlo simulations
and illustrate the method in a study of the determinants of government formation duration and survival
in European parliamentary democracies.

∗Ph.D. student, Department of Political Science, University of Illinois. E-mail: akachi2@illinois.edu; URL:
https://netfiles.uiuc.edu/akachi2/home.
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In many topics in political science, understanding survival time and failure rates of political processes
is crucial. Scholars in comparative politics, for example, have explained the survival and dissolution of
cabinets in parliamentary democracies (King et al. 1990; Warwick 1992), the duration of political regimes
(Chapman and Roeder 2007; Svolik 2008), and the timing of union-friendly labor reforms (Murillo and
Schrank 2005). International relations scholars have examined the survival of military alliances (Bennett
1999), post-conflict peace duration (Fortna 2004; Werner and Yuen 2005), and the speed at which policies
diffuse around the world (Simmons and Elkins 2004). In American politics, research has explored the
time until major pieces of legislation are amended (Maltzman and Shipan 2008), the duration of Supreme
Court nominations (Shipan and Shannon 2003), and the timing of issue position taking in Congress
(Box-Steffensmeier et al. 1997; Boehmke 2006; Darmofal 2009). And these examples only scratch the
surface.

There is now recognition that many of the durations that we want to explain are interdependent in various
ways (Boehmke et al. 2006; Boehmke 2006; Quiroz Flores 2008). The first kind of interdependence is when
the time to one political event depends on the time to another related event. An example for this type of
interdependent durations includes the time it takes to negotiate an international treaty and the survival
of that agreement, the time it takes to create a new constitution and the length of its survival, the amount
of time it takes an individual to form political attitudes and the stability of those beliefs, the amount
of time it takes to confirm a bureaucrat and the duration of his or her tenure in office, and the length
of time a peacekeeping mission is in place and the duration of the post-mission peace. The second type
of interdependence is when the time to a particular political event for one actor depends on the time
to that same event for other actors. For example, the time it takes states to enter wars, alliances, and
international organizations depends on the time it takes other states to make these decisions. The entry
and exit decisions of political candidates in electoral contests depend on the timing of their opponents. If
policies diffuse across countries, the time it takes one country to adopt a particular policy depends on the
adoption timing of other states. The time it takes a political candidate to initiate negative campaigning
most likely depends on the timing of other candidates’ decisions to run negative campaign ads.

In a previous work with Jude Hays, we developed an interdependent duration model, using a system of
simultaneous equations (Hays and Kachi 2009). One of the key contributions of this previous work was to
place these two kinds of interdependent durations within a single unified econometric framework. More
importantly, and more relevantly to the methodological extension that I undertake in this paper, our
approach models the structure of dependency among multiple durations as scholars often have in mind.
Instead of treating the inter-duration dependency as nuisance in estimating the effects of covariates on
the durations (as in the existing multi-duration models), we directly model the dependency by expressing
a duration as a function of the other durations and provide a method for estimating the inter-duration
dependency, as well as the effects of covariates on each duration.

The previous work on interdependent durations, however, provides only a basic estimation method to deal
with multiple duration processes. For example, this estimator is still useful if the data are uncensored and
there are no time-variant covariates. However, social scientists are not always fortunate enough to have
such “low-maintenance” data. In this paper, I focus on the modification of the likelihood to accommodate
data with right-censoring.

The difficulty of writing the likelihood function with right-censored data, particularly for models with
interdependent durations, stems from the fact that deriving the joint survivor function included in the
likelihood—or equivalently the joint cdf because the survivor function is defined as S(y) = 1 − F (y)—
involves multiple integral with respect to all the duration variables. The multiple integral become a
challenge only when we have right-censored data, because observations can contribute information to the
likelihood through the joint survivor function (and not the joint pdf) only when these observations are
right-censored. This multiple integral makes estimation extremely burdensome. Hays (2009) discusses
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this problem and suggest a possible estimation method using recursive importance sampling (RIS). This
strategy uses RIS as simplification of brute-force numerical search for the maximum likelihood. In this
paper I take a different approach to approximate the likelihood by using copula functions to recover a
joint cdf from a given joint pdf. The major advantage of this approach is the estimability of the likelihood
without concerns about the computational burden, especially in the cases where we have a number of
interdependent duration processes in the model.

I evaluate the performance of my estimator by Monte Carlo simulations and illustrate the method in
a study of the determinants of government formation duration and survival in European parliamentary
democracies.1

This paper is organized as follows. First, I review the set-up of the interdependent duration model devel-
oped in the previous work. Second, I present a general form of the likelihood function with right-censored
cases. Third, I demonstrate a way to approximate the joint survivor function using a copula function.
To exemplify the use of a copula, I will focus on a specific case where there are only two duration pro-
cesses and each follows a Weibull distribution. Fourth, I evaluate the performance of this estimator using
Monte Carlo experiments.Finally, I estimate a simultaneous durations model of government formation
and survival.2 I conclude with a discussion about the related issues to consider in the next phase of this
project.

1 Review of the SEQ Interdependent Duration Models

In this section, I review the basic structure of the simultaneous equations model for interdependent
duration processes developed in a previous work (?). It should clarify how the full information maximum
likelihood estimator was constructed and how the likelihood without right-censoring appears in general.

1.1 Linear Parameterization of Weibull Durations (The AFT Model)

The dependent variables of interest, y∗, are D distinct duration processes that have Weibull distributions
with two parameters.

y∗id ∼Weibull(λd, θd), (1)

where i = {1, · · · , N} denotes the observational-unit index and d = {1, · · · , D} denotes the duration
index, implying that there are N ×D observations in total. The notation λ is the shape parameter and θ
is the scale parameter. These distributional parameters take the common values across N observational
units; hence they have only one subscript that indicates duration process. A common way to parameterize
a Weibull model of D interdependent durations is to log-linearize the model and obtain a log-linear system
of D equations (Box-Steffensmeier and Jones 2004). It is also known that the logged Weibull variable
turns out a standard Gumbel variable that is scaled by the shape parameter in the original Weibull

1At the moment, this is a “forthcoming” section. Also, I would like to note that this particular methodological innovation
was originally motivated by the main substantive topic of my own dissertation, interdependence between the duration of
democratic transition and the survival of democracy. At the moment, I am not emphasizing this substantive topic due to
the on-going definitional and data-collection debates...

2Incomplete. Forthcoming.
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distribution. 3 For example, in the univariate Weibull case, the log-linear form would look like;

y = ln y∗ = ln θ +
1
λ
ε

= Xβ +
1
λ
ε,

(2)

where ε ∼ ExtremeV alueI (StandardGumbel) and we define y = ln y∗. The second line of equation (2)
shows how we could include covariates, by making the Weibull scale parameter, θ, a function of the
covariates, θ = eXβ. For further detail regarding the link between a Weibull and an extreme value
distribution, see Appendix 2.

1.2 The System

The system of D distinct durations with N observational units in matrix notation is

y(ND×1) = Ay + Xβ + Lu. (3)

The dependent variable, yid = ln y∗id, is a logged Weibull random variable. The vector y is a stack of D
vectors, each of which contains N observational units.

y(ND×ND) =

 y.1
...

y.D

 , where y.d(N×1) =

 y1d
...

yNd

 .

The matrix A is the coefficient matrix for the dependence. An element matrix αd
′
.d contains coefficients

representing the effects of the second duration d on the first duration d′. The diagonal elements Sp’s in
the A matrix are the matrices that capture the “spatial” dependency. This is the dependency among
N observational units within each duration process. We call it “spatial” dependency for convenience,
because the linear system captures the among-unit dependency using weights matrices just like in spatial
contexts. Note that Spd = 0 for all d when one assumes no among-unit dependency. Similarly αd

′
.d = 0

when one assumes no dependency between duration d and d′.

A(ND×ND) =


Sp1 α1

.2 · · · α1
.D

α2
.1

. . . . . .
...

...
. . . . . . α

αD.1 · · · αD.D−1 SpD

 ,

3The standard Gumbel distribution is a special case of the type-I extreme value (minimum) distribution. The distribution
and density functions of the type-I extreme value (minimum) distribution aref(u) = 1

b
e

u−a
b e−e

u−a
b

F (u) = 1− e−e
u
b ,

where a is the location parameter and b is the scale parameter. The distribution and density functions of the standard
Gumbel distribution are {

f(u) = eue−e
u

F (u) = 1− e−e
u

.

Note that the standard Gumbel distribution is a special case of the type-I extreme value distribution, where a = 0 and
b = 1. A logged Weibull variable has the type-I extreme value distribution in general and only the scaling of the resulting
extreme value variable varies depending on how one sets the scale parameter of the extreme value variable. For further
details, see Appendix 2.
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where

αd
′

.d(N×N) =

 αd
′
.d 0

. . .
0 αd

′
.d

 ,Spd(N×N) =


0 αd(1,2) · · · αd(1,N)

αd(2,1)

. . . . . .
...

...
. . . . . . αd(N−1,N)

αd(N,1) · · · αd(N,N−1) 0


The vector x denotes a set of covariates and the supscript indicates to which equation the covariate vector
is specific. Each vector x contains K covariates with coefficients denoted by β. The subscript of X, .d,
indicates that these x’s affect duration d, and the number of covariates, i.e., the number of elements
in each X.d is denoted Kd. The error term uit in this structural form is i.i.d. with the extreme value
minimum distribution. The error term is multiplied by λ−1

.t , which is the shape parameter of the original
Weibull distribution and the value of λ is allowed to vary across duration processes.

X(ND×(K0+···+KD)) =


X.1 0 · · · 0

0 X.2
. . .

...
...

. . . . . . 0
0 · · · 0 X.TD

 , where X.d(N×Kd) =

 x1
1d · · · xKd1d
...

. . .
...

x1
Nd · · · xKdNd



β(K0+···+KD×1) =
(
β1
.1 · · · βK1

.1 β1
.2 · · · βK2

.2 · · · · · · β1
.D · · · βKD.D

)′
;

L(ND×ND) =

 L.1 0
. . .

0 L.D

 , where L.d(N×N) =


1
λ.d

0
. . .

0 1
λ.d

 ;

u(ND×1) =

 u11
...

uND

 .

The following reduced form can be derived from the structural form (3);

y(ND×1) = (I−A)−1Xβ + (I−A)−1Lu

= ΓXβ + ΓLu

= ΓXβ + v,

(4)

where Γ = (I−A)−1 and v = ΓLu.

1.3 Deriving the Likelihood via Change of Variables

The only task left before writing a likelihood function is to derive the joint density of y’s. We do not
know the joint distribution of y’s, but fortunately it is not hard to obtain the joint distribution of u’s,
because they are assumed to be i.i.d and we know that the marginal of u has the type I extreme value
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distribution. We use the change of variables theorem to derive the joint pdf of y’s from the joint pdf of
u’s. By solving equation (4) for u, we have

uND×1 = g−1(y) = (ΓL)−1y − L−1Xβ. (5)

The Jacobian matrix of g−1(y) is

J =


∂g−1

11 (y)
∂y11

· · · ∂g−1
11 (y)
∂yND

...
. . .

...
∂g−1
ND(y)
∂y11

· · · ∂g−1
ND(y)
∂yND

 .

If the inverse vector function, (u11, · · · , uND) = g−1(y11, · · · , yND), exists for all y = (y11, · · · , yND) such
that y ∈ {y = g(u)}, the joint density of Y = g(U) is given by

h(y11, · · · , yND) =

{
f(g−1

11 (y11, · · · , yND), · · · , g−1
ND(y11, · · · , yND))|det(J)|

0, otherwise

=

{
f(u11, · · · , uND)|det(J)|
0, otherwise

=

{
f(u11)f(u12) · · · f(uND)|det(J)|
0, otherwise.

(6)

The last line in equation (6) follows from the i.i.d. assumption of u, and each f(uid) is the standard
Gumbel pdf.

2 Derivation of the Likelihood Function with Right-Censored Observations

If the joint survivor function S(y11, · · · , yND) is known, the likelihood function with right-censoring is

L ∝
{
h(y11, · · · , yND)

}δi{
S(y11, · · · , yND)

}1−δi

=
N∏
i=1

{
h(yi1, · · · , yiD)

}δi{
S(yi1, · · · , yiD)

}1−δi
b/c we assume N interdependent observations

=
N∏
i=1

{ D∏
d=1

f(g−1(yid))
}δi{

S(yi1, · · · , yiD)
}1−δi

|det(J)|

=
N∏
i=1

{ D∏
d=1

f(uid)
}δi{

S(yi1, · · · , yiD)
}1−δi

|det(J)|

(7)

This is the exact expression of the likelihood only if the joint survivor function is also derived from the
change-of-variables method as it is the case for the joint pdf. However, unfortunately the survivor function
is not derived in a way entirely consistent with the joint pdf, because the joint cdf, which in turn provides
the survivor function as S(y) = 1−F (y), is not uniquely recoverable from the joint pdf. The consequence
is that |det(J)| in equation (7) might carry too much or too little weight for the portion of the likelihood
in which the S function, instead of the f function, is contributing. I will further discuss the weight that
|det(J)| should carry in a later section.4

4Note to myself: I will later consider a weighted version,
∑
δi
N
|det(J)|.
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3 Approximating a Joint CDF Using a Copula Function

The main methodological innovation of this project is a less burdensome way to obtain a joint cdf for the
interdependent duration variables. To recap the process up to the likelihood derivation, we start with
duration dependent variables with certain probability distributions (assumed based on conventions and
the substantive theory) and log-linearize the dependent variables to construct a linear parametric model
of the covariates’ effects on the durations. Each error term of the system of log-linearized equations has
some (univariate) probability distribution. For example, if the original duration variable is assumed to be
Weibull distributed (as in the example that I show in this paper), each error term has the type I extreme
value distribution (EVD). To construct the likelihood function of the logged dependent variables, we
need to derive the joint density of the dependent variables. This is done through the change-of-variables
method, using the fact that each error term has a known distribution and these errors are independently
distributed. This method allows us to construct a system of duration equations, which maintains the
structure of causal theories that scholars often have in mind, but it does not directly provide the joint cdf
of the dependent variables. To obtain the joint cdf of durations, F (y), which is necessary to write the
survivor function S(y) = 1 − F (y), one has to take the integrals of the joint pdf with respect to all the
duration processes, y1, · · · , yD. From equation (??), the exact expression for the likelihood would be

L =
N∏
i=1

{ D∏
d=1

f(uid)
}δi{

1−

F ((y))︷ ︸︸ ︷( ∫ ui1

0
· · ·
∫ uiD

0

D∏
d=1

f(zid)dzi1 · · · dziD
)}1−δi

|det(J)|. (8)

The multiple integral makes estimation extremely burdensome. Hays (2009) discusses the difficulty due to
multiple integral in detail and suggest a possible estimation method using recursive importance sampling
(RIS). This strategy uses RIS as simplification of brute-force numerical search for the maximum likelihood.

To alleviate this estimation burden caused by the multiple integral and make interdependent duration
models more usable for applied researchers, I explore the use of copula functions to recover a joint cdf
from a given joint pdf.

3.1 Copula Functions

A copula is a function that gives a proper joint distribution function from univariate marginal distribution
functions (Nelsen 2006). Several papers in political science use copulas or copula related distributions to
derive likelihoods for empirical analysis including Boehmke et al. (2006), Boehmke (2006), Quiroz Flores
(2008) and Fukumoto (2009) among others. The primary advantage of using copulas is that one has the
joint distribution function, which is necessary to construct many likelihoods, including the likelihoods for
interdependent duration models.5

Since “copula” is merely a category of functions that gives a proper joint distribution function from
univariate marginal distribution functions, a number of different copulas that have different dependency
structures among random variables have been studied. To exemplify the use of copula functions to
construct the interdependent duration likelihood, I focus on one of the most commonly used copulas,
Farlie-Gumbel-Morgenstern (FGM) copula, and the case where we have exactly two interdependent ran-
dom variables (D = 2).6 First, consider a joint distribution function of random variables y∗1 and y∗2

5Other examples include the likelihoods for qualitative or limited dependent variables models.
6The interdependent duration model constructed in the previous section is general enough to include as many duration

processes as one wishes in theory (putting aside the estimation burden), and multivariate copulas have been studied and
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generated from the following FGM copula

F (y∗1, y
∗
2) = F (y∗1)F (y∗2)[1 + α{1− F (y∗1)}{1− F (y∗2)}], (9)

where α, the association parameter, captures the degree of dependence between the two y∗’s and −1 ≤
α ≤ 1. The corresponding joint density function is given as

f(y∗1, y
∗
2) = f(y∗1)f(y∗2)[1 + α{2F (y∗1)− 1}{2F (y∗2)− 1}]. (10)

Note that the degree of dependency in a copula is captured only by a single α. It implies that this
association parameter α in the copula is some “combination” (or a function) of the two dependency
parameters we defined in our duration model based on our substantive theory, which tells us that the first
duration depends on the second duration (y1 = f(α2y2)) and vice versa (y2 = f(α1y1)).

In other words, if one is not interested in a substantive-theoretical dependency structure between the two
durations, and decides to treat such dependency as nuisance, then it is possible to use a copula (which
captures the “overall” dependency by a single α) to construct a joint pdf and write the likelihood for the
two durations simply as;

L(X,β, λ1, λ2|y∗1, y∗2) =
N∏
i=1

f(y∗i1, y
∗
i2). (11)

In fact, this is the duration (seemingly unrelated) SUR model used in the existing multi-duration studies
(Boehmke et al. 2006; Boehmke 2006; Quiroz Flores 2008).

3.2 Copula-Based Likelihood vs. Change-of-Variable Likelihood

Naturally, one might wonder about the potential connection between the likelihood written with the
joint pdf from a copula and the likelihood written with the pdf derived through the change of variables
theorem. It is useful to compare the copula-based likelihood with the change-of-variables likelihood for the
simple case of two duration processes that follow specific probability distributions (Weibull in this case),
in which there are no covariates, implying Xβ = 0 or equivalently θd = 1. To see the relationship of the
two approaches, it is sufficient to consider the case where there is only one observation point (N = 1). For
this reason, I will omit the subscript that indicates observational unit (i) and include only the duration
subscript (d).

First, consider an SEQ model for logged-duration dependent variables with no covariates, which takes the
form {

ln y∗1 = α2 ln y∗2 + 1
λ1
u1

ln y∗2 = α1 ln y∗1 + 1
λ2
u2

⇔

{
u1 = (ln y∗1 − α2 ln y∗2)λ1

u2 = (ln y∗2 − α1 ln y∗1)λ2,

(12)

where ln y∗d denotes a dependent variable. The variable y∗d measures a spell of time and it is assumed to
have the FGM Weibull distribution. It is known that a logged Weibull is a type I EVD. The distribution

characteristics are well known. Therefore it would be possible to generalize the likelihood for the cases in which we have
more than two interdependent duration variables, and the estimation results should be compared using different copulas in
the future research.
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and density functions of the type-I extreme value (minimum) distribution are

Type I EVD

f(u) = 1
be

u−a
b e−e

u−a
b

F (u) = 1− e−e
u
b ,

(13)

where a is the location parameter and b is the scale parameter.

The Jacobian for u is

J =

(
∂u1
∂y∗1

∂u1
∂y∗2

∂u2
∂y∗1

∂u2
∂y∗2

)
=

(
λ1
y∗1

−α2λ1
y∗2

−α1λ2
y∗1

λ2
y∗2

)
. (14)

|det(J)| = λ1λ2

y∗1y
∗
2

|1− α1α2|. (15)

From equation (??), the following is the exact expression of the likelihood (without right-censored cases)
derived by the change-of-variables approach.7

fcvt(y1, y2) =
( 2∏
d=1

f(ud)
)
|det(J)|

= λ1λ2y
∗λ1−1
1 y∗λ2−1

2 e−2(y
∗λ1
1 +y

∗λ2
2 )ey

∗λ1
1 +y

∗λ2
2 |1− α1α2|.

(16)

Now let’s turn to the copula-based likelihood with Weibull durations. To construct the joint pdf of
two Weibull distributions, one can simply plug the Weibull marginal pdf and cdf into the FGM copula
(equation (10)). The univariate Weibull cdf and pdf are

Weibull

F (yd) = 1− e−(
yd
θd

)λd

f(yd) = λd
θd

(ydθd )λd−1e
−(

yd
θd

)λd ; d = 1, 2,
(17)

where λd > 0 and θd > 0. The resulting likelihood function with the joint pdf derived using equation (10)
is

fcopula(y1, y2) = λ1λ2y
∗λ1−1
1 y∗λ2−1

2 e−2(y
∗λ1
1 +y

∗λ2
2 )

× [4α− 2αey
∗λ1
1 − 2αey

∗λ2
2 + (1 + α)ey

∗λ1
1 +y

∗λ2
2 ].

(18)

Finally, by comparing equation (16) and (18),

fcvt(y1, y2) = fcopula(y1, y2)

⇔ α =
|1− α1α2| − 1

4e−y
∗λ1
1 −y∗λ2

2 − 2e−y
∗λ1
1 − 2e−y

∗λ2
2 + 1

.
(19)

In order for the covariance structure that is implied by the copula to be consistent with the structural
SEQ relationship among the endogenous variables, equation (19) must hold.

7The transformation in equation (16) uses the fact that eui = y∗λi
i .
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3.3 Approximating the Change-of-Variable Likelihood with Right-Censored Observations
Using a Copula

Recall that the difficulty in estimating the distribution parameters in the likelihood comes from the
multiple integral in the survivor function for censored cases (see equation (8)). I suggest to use copula
based joint cdf derived from (9) with the α replaced by the expression in (19).

First, the bivariate Weibull cdf derived from (9) and (17) is

F (y∗1, y
∗
2) = (1− e−(

y∗1
θ1

)λ1
)(1− e−(

y∗2
θ2

)λ2
)(1 + αe

−(
y∗1
θ1

)λ1−(
y∗2
θ2

)λ2
) (20)

where y∗1 ≥ 0, y∗2 ≥ 0, −1 ≤ α ≤ 1, θ1 > 0, θ2 > 0, λ1 > 0 and λ2 > 0.

Replacing the association parameter α with the expression in (19), the joint cdf becomes

Fhybrid(y∗1, y
∗
2) = (1− e−(

y∗1
θ1

)λ1
)(1− e−(

y∗2
θ2

)λ2
)(1 +

|1− α1α2| − 1

4e−y
∗λ1
1 −y∗λ2

2 − 2e−y
∗λ1
1 − 2e−y

∗λ2
2 + 1

e
−(

y∗1
θ1

)λ1−(
y∗2
θ2

)λ2
)

(21)

Since the survivor function is 1− Fhybrid(y), the approximated (by a copula) likelihood becomes

L =
N∏
i=1

{ D∏
d=1

f(uid)
}δi{

1− Fhybrid(yi1, · · · , yiD)
}1−δi

|det(J)| (22)

4 Monte Carlo Evaluations of the Hybrid Estimators

[Forthcoming.] To evaluate the performance of this estimator, I need to conduct a set of Monte Carlo sim-
ulations. I am currently facing some difficulty finding the correct way to general data with interdependent
durations with right-censoring.

5 Discussion: Short- and Mid-Term Tasks

This is a preliminary draft of the initial step of my project that attempts to provide a relatively simple
statistical inference tool for interdependent duration data with right censoring. There are some important
issues to be considered further.

1. “Weight” on the |det(J)| term

In equation (??), if the joint pdf and the joint survivor functions are both derived through the
change-of-variables method, then it is correct to leave in the |det(J)| term, which directly comes
from the change-of-variables theorem. However, my suggestion in this paper is to derive the survivor
function—the portion in the likelihood function that contributes only when the observation is a right-
censored case (δi = 0)—using a copula because the change of variables theorem does not provide
us with the joint cdf. The consequence is that the |det(J)| term carries too much weight in the
likelihood function. There needs to be a weight correction for the det term. How?
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One possibility is to weight |det(J)| straightforwardly by the proportion of uncensored cases as∑
δi
N |det(J)|. Obviously this is a rough approximation.

Another possibility that I would like to explore is the manipulation of the Jacobian matrix itself.
An element of the Jacobian matrix in the change-of-variable method captures the amount of the
change in the new variable induced by a unit change in the old variable. If i’th observation is right-
censored and not contributing to the likelihood, then the i’th row in the Jacobian matrix should not
be contributing either. If this is true, then we force 0 in the row i of the Jacobian matrix whenever
ith observation is right-censored.8

2. Choice of copula

I used the FGM copula as the first example here to recover a joint cdf, but there are several more
well-known and well-studied copula functions available. I will need to conduct simulations to show
the difference in the estimator performance based on different copulas.
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