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Abstract

We explore the use of geographic boundaries as regression discontinuities (RD),
studying designs where the assignment variable is distance to a political boundary and
subjects on either side of this boundary are compared. We develop the identification
assumptions behind RD designs of this type and suggest that the key assumption is
more likely to be violated, since agents are better able to sort around the discontinuity.
Moreover, we show that geographic RD designs that employ a naive notion of distance
as the assignment variable fail to recover the treatment effects of interest, and develop
an new estimator that is faithful to the inherently spatial qualities of the design. We
illustrate our argument and method with an application to voter turnout that investi-
gates whether ballot initiatives increase turnout by exploiting a political boundary as
a regression discontinuity. We focus on a 2008 initiative that was on the ballot in the
city of Milwaukee but not in Milwaukee county.

1 Introduction

Selection and endogeneity are often key threats to inference with observational data. Re-

cently, analysts have turned to natural experiments and quasi-experimental methods as one

way overcome these obstacles in observational studies. Among these quasi-experimental

techniques, the regression discontinuity (RD) design has been revived with great fanfare,

particularly in economics, but also in political science. Lee and Lemieux (2010) summarize

the promise that surrounds RD designs: “Another reason for the recent wave of research
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is the belief that the RD design is not ‘just another’ evaluation strategy and that causal

inferences from RD designs are potentially more credible than those from typical ‘natural

experiment’ strategies (e.g., differences-in-differences or instrumental variables), which have

been heavily employed in applied research in recent decades.” Recently, RD designs have

gained further credibility by recovering experimental benchmarks (Green et al. 2009; Cook

et al. 2008)

In the simplest version of the RD design, we observe a dichotomous treatment assign-

ment that is a deterministic function of a single, observed, continuous covariate or “score.”

Treatment is assigned to those individuals whose score crosses a known threshold. The av-

erage outcomes for individuals just below the threshold are assumed to represent a valid

counterfactual for treated individuals just above the threshold.

The use of RD designs has exploded in economics recently. Lee and Lemieux (2010)

count 78 applications of RD designs in economics, and the design is spreading quickly in the

political science literature (Butler 2009; Butler and Butler 2006; Broockman 2009; Eggers

and Hainmueller 2009; Gerber et al. 2011; Hopkins and Gerber 2009). One particular type

of RD design exploits discontinuities in geography. In this form of the RD design, which

we interchangeably call the geographic RD or the geographic discontinuity (GD) design, the

discontinuity threshold is a geographic boundary such as a school district or national border.

In economics, such designs are often used to estimate the effect of school quality on house

prices(Black 1999; Bayer et al. 2007; Lavy 2006). In political science, political boundaries

are often associated with variation in key treatments such as national or state institutions.

Important variation in political boundaries has led analysts to often adopt this geographic

discontinuity design (Posner 2004; Miguel 2004; Krasno and Green 2008; Berger 2009).

We argue that the geographic RD design is not just another RD design. In their seminal

paper, Hahn et al. (2001) briefly suggest that geographic discontinuities are identified under

the same assumptions as classic RD designs based on scholarship cutoffs on standardized

tests. Contrary to this view, we prove that the GD design requires different identification
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assumptions than standard RD designs. When the sharp RD design is applied to geographic

boundaries, the assignment variable must be defined as a two-dimensional distance between

points on a map. Once a second dimension is added to the assignment variable, the standard

continuity assumptions required for identification must be generalized, and a consequence

of this generalization is that the RD design now identifies an infinite number of treatment

effects, one at every point on the discontinuity boundary. We develop a nonparametric

estimation method for treatment effects that is specially suited to deal with these issues.

We also argue that the key assumption of continuity that belies the RD design is often

unlikely to hold when applied to geographic boundaries. That is, with geographic discontinu-

ities we expect that agents will be able to sort very precisely around geographic boundaries,

which may undermine identification. More generally, we argue that great care and con-

siderable substantive knowledge is needed to successfully exploit political boundaries as RD

designs. We explore the complications of geographic discontinuity designs within the context

of a substantive example on turnout. Specifically, we explore whether ballot initiatives can

increase turnout. We study the effect of an initiative on the ballot in the city of Milwaukee

that did not appear on the ballot in the rest of the county.

2 Identification with a Geographic Discontinuity

In a regression discontinuity design, assignment of a binary treatment, T , is a function of

a known covariate, S, usually referred to as the forcing variable or score. In the sharp RD

design, treatment assignment is a deterministic function of the score, where all units with

score less than the known cutoff S = s̄ are assigned to the control condition (T = 0) and all

units above the cutoff are assigned to the treatment condition (T = 1). In contrast, in a fuzzy

design the assignment to treatment is a random variable given the score, but the probability

of receiving treatment conditional on the score, P (T = 1|S), still jumps discontinuously at s̄.

In both cases, the crucial aspect of the design is that the probability of receiving treatment

jumps discontinuously at the known cutoff s̄. In what follows, we focus on the sharp RD
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design, since all examples of geographic discontinuities have a deterministic assignment by

definition.

We follow the literature and adopt the potential outcomes framework, and assume that

individual i has two potential outcomes, Yi1 and Yi0, which correspond to both levels of

treatment, Ti = 1 and Ti = 0, respectively. The observed outcome is Yi = TiYi1 + (1−Ti)Yi0,

and the fundamental problem of causal inference is that we cannot observe both Yi1 and

Yi0 simultaneously for any given individual. A regression discontinuity design provides a

possible way to identify the parameter of interest, at least locally. In the sharp RD design,

Ti = 1 {Si > s̄}, where 1 {·} is the indicator function.

Hahn et al. (2001) demonstrate that the key condition needed for identification is that the

potential outcomes are a continuous function of the score. Under this continuity assumption,

the potential outcomes can be arbitrarily correlated with the score, so that, for example,

people with higher scores might have higher potential gains from treatment. Focusing on

the regression function, this assumption can be formally stated as follows:

A1: Continuity in one-dimensional score. The conditional regression functions are con-

tinuous in s at s̄:

lim
s→s̄

E(Yi0|Si = s) = E(Yi0|Si = s̄)

lim
s→s̄

E(Yi1|Si = s) = E(Yi1|Si = s̄).

Since Yi = Yi1 when Ti = 1, Yi = Yi0 when Ti = 0, and Ti = 1 {Si ≥ s̄}, assumption A1

implies

lim
s→s̄+

E(Yi|Si = s) = E(Yi1|Si = s̄)

and

lim
s→s̄−

E(Yi|Si = s) = E(Yi0|Si = s̄),

which is a formal statement of the intuition that individuals very close to the cutoff and on
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opposites sides of it are comparable or good counterfactuals for each other. From this, it

follows that

lim
s→s̄+

E(Yi|Si = s)− lim
s→s̄−

E(Yi|Si = s) = E(Yi1 − Yi0|Si = s̄).

Thus, continuity of the conditional regression function is enough to identify the average

treatment effect at the cutoff. That is, the RD design identifies a local average treatment

effect for the subpopulation of individuals whose value of the score is (near) s̄. Without

further assumptions, such as constant treatment effects, the effect at s̄ might or might not

be similar to the effect at different values of S.

Lee (2008) provides a behavioral interpretation for the continuity assumption in the RD

design. He demonstrates that when agents are able to precisely manipulate their value

of S continuity of the conditional regression function is unlikely to hold. Formally, S =

Z + e, where Z comprises efforts by agents to sort above and below s̄ and e is a stochastic

component. When e is small and agents are able to precisely sort around the threshold, the

RD design may not identify the parameter of interest. This behavioral interpretation of the

continuity will prove useful for the evaluation of GD designs.

Analysts who use geographic boundaries as regression discontinuities have relied on the

identification conditions for the classic sharp RD design. Typically, GD designs compare two

adjacent areas; in one of the areas, all individuals residing in that area are assigned to the

control condition, and in the other, all individuals are assigned to the treatment condition.

Henceforth, we call these areas the control area and the treatment area, and we denoted them

by Ac and At, respectively. In the GD design, treatment assignment jumps discontinuously

along the boundary that separates Ac and At. In most applications of the GD design, the

score S is defined as the shortest distance to the boundary, and units that are close to

the boundary in terms of this distance but on opposite sides of the boundary are taken as

valid counterfactuals for each other. In this setup, individual i has distance Si = d if the
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distance from i’s location to the point on the boundary that is closest to i is equal to d. A

serious limitation of this strategy, however, is that it ignores the spatial nature of geographic

locations. As illustrated in Figure 2, the shortest distance from individual i’s location to

the boundary does not determine the exact location of i in the map, since two individuals i

and j in different locations can both have Si = Sj = d. That is, this naive distance does not

account for distance along the border. As one can see in Figure 2, a naive implementation of

the RD design along a geographic boundary that does not take into account both dimensions

would treat individuals i and j in the control area as equally distant from individual k in the

treatment area, when in fact j is much closer to k than i. This problem will be exacerbated

when the boundary is longer; in Figure 2, as the boundary becomes longer, the distance

between control unit i and treated unit k can be made arbitrarily large even as Si = d

remains constant, by moving i down along the dotted line.

Treatment area (At)

Control area (Ac)

Boundary

●i

●j

● kd

Figure 1: Failure of one-dimensional distance to identify boundary points

This suggests that applying the sharp RD design to geographic boundaries requires gen-
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eralizing the score Si to be a two-dimensional distance between points on a map. We re-

formulate the score so that Si = (Si1, Si2), where the score is now a function of two points

that uniquely define i’s location, such as the latitude and longitude.1 Once we add a sec-

ond dimension to the score, the continuity assumption required for identification must be

generalized to the following assumption:

A2: Continuity in two-dimensional score. The conditional regression functions are con-

tinuous in (s1, s2) at all points (s̄1, s̄2) on the boundary:

lim
(s1,s2)→(s̄1,s̄2)

E {Yi0|(Si1, Si2) = (s1, s2)} = E {Yi0|(Si1, Si2) = (s̄1, s̄2)}

lim
(s1,s2)→(s̄1,s̄2)

E {Yi1|(Si1, Si2) = (s1, s2)} = E {Yi1|(Si1, Si2) = (s̄1, s̄2)} ,

for all points (s̄1, s̄2) on the boundary.

Note that in the case of a two-dimensional score, the left and right limits are no longer defined,

since now any set of points (s̄1, s̄2) on the boundary can be approached from an infinite

number of directions. Moreover, there is no longer a single point at which treatment jumps

discontinuously, but rather an infinite collection of points – the collection of all points on

the boundary or line that separates the treatment and control areas. This has the important

implication that the parameter identified by a geographic RD is not unidimensional but

rather infinite-dimensional as it is a curve on a plane. In other words, since the cutoff is not

a point but a boundary, under the appropriate two-dimensional continuity assumptions the

GD design will identify the treatment effect at each of the boundary points.

Assuming A2, for any point (s̄1, s̄2) on the boundary, we have

lim
(s1,s2)→(s̄1,s̄2)

E {Yi|(Si1, Si2) = (s1, s2)} = E {Yi0|(Si1, Si2) = (s̄1, s̄2)} , for all(s1, s2) ∈ Ac

1An alternative set of points could be easting and northing which are geographic Cartesian coordinates
in the Universal Transverse Mercator coordinate system.
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and

lim
(s1,s2)→(s̄1,s̄2)

E {Yi|(Si1, Si2) = (s1, s2)} = E {Yi1|(Si1, Si2) = (s̄1, s̄2)} , for all(s1, s2) ∈ At

Thus, under A2, the GD identifies a (possibly different) treatment effect for every point on

the boundary :

τ(s̄1, s̄2) = lim
(s1,s2)∈At→(s̄1,s̄2)

E {Yi|(Si1, Si2)} − lim
(s1,s2)∈Ac→(s̄1,s̄2)

E {Yi|(Si1, Si2)}

= E {Yi1 − Yi0|(Si1, Si2) = (s̄1, s̄2)}

The effect τ(s̄1, s̄2) evaluated at all all points (s̄1, s̄2) on the boundary defines the (infinite

dimensional) treatment effect curve. Not surprisingly, the treatment effect in a GD design is

actually a spatial construct as it can change in space. Once the two-dimensional structure of

the problem is recognized, the problem illustrated in Figure 2 can be easily avoided. Since

there is an infinite number of distinct locations from where an individual can be equally

close to the boundary, the one-dimensional distance to the closest point on the boundary

does not identify a point on this boundary. Thus, implementing a GD design with a naive

one-dimensional distance will not identify a treatment effect at a discontinuity point, since

any such point can only be identified with two coordinates on the plane. Thus, applying

a sharp RD design to a geographic discontinuity requires a modification of the identifying

assumption, and the average treatment effect of interest must be defined as a curve rather

than as a single parameter.

It is useful at this point to consider the GD design in the context of the behavioral

interpretation of the continuity assumption. First, the move from A1 to A2 does not change

the fact that continuity of the conditional regression function is less likely to hold if agents can

precisely sort around the threshold. Second, when the discontinuity is a geographic boundary

between cities, counties, school districts, etc., and the units of analysis are individuals who
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reside in these areas, assuming that A2 holds amounts to assuming that people cannot

precisely sort around the boundary in a way that makes potential outcomes discontinuous.

The assumption about the ability of agents to sort around the threshold may be strong

in any RD design, but in a GD design we might expect that people will often be able

to carefully select their place of residence based on the boundary of interest. That is,

features such as the quality of schools, crime rates, distance to public transportation, the

price of housing may all vary discontinuously at the boundary. In short, depending on the

application, we may have reason to suspect that the stochastic component of the score, e, is

quite small. If true, assumption A2 will be violated. This contrasts with many conventional

applications of RD, where often it can be assumed that sorting occurs relatively imprecisely.

Thus, in any application of the GD design, analysts must carefully consider the ability of

people to sort around the boundary. Analysts will need to carefully check whether pre-

determined characteristics have the same distribution along the boundary. If the means of

such characteristics jump discontinuously, there is little reason to think parameters of interest

are identified. Substantive knowledge of the geographic boundary under consideration will

also prove useful in understanding the ability of agents to sort around the discontinuity of

interest. We now outline our application of interest, where the issues mentioned in this

section will become apparent.

3 Application: Ballot Initiatives and Voter Turnout

One feature of the political arena in some states is the initiative process. While the method

by which direct legislation is implemented varies, in 24 states citizens can place legislative

statutes directly on the ballot for passage by the electorate. While the initiative process

is often decried as populism run amok in the popular press, the consequences of initiatives

are thought to be benign to favorable in much of the academic literature (Matsusaka 2004;

Lupia and Matsusaka 2004; Smith and Tolbert 2004). For good or ill, few doubt that direct

legislation changes outcomes across states, particularly directly on the issue area in question.
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It is also thought, however, that initiatives have spill over effects on outcomes unrelated to

the policy issue on the ballot. In particular, it is thought that ballot initiatives increase

voter turnout (Tolbert et al. 2001; Smith and Tolbert 2004; Tolbert and Smith 2005). In

fact both political parties often strategically sponsor ballot initiatives in hopes of boosting

turnout among key constituencies (Gertner 2006).

Assessing the effect of initiatives on the behavior of citizens is a difficult task. Given

that the initiative process was not randomly assigned across states and that states are very

heterogeneous, we must exercise great caution before assuming initiatives cause a particular

outcome. Both of these obstacles are common when attempting to make causal inferences

with observational data. The problem is that it is quite likely a confounder exists which might

be correlated with the presence of direct legislation and the outcome in question. That is

states with a particularly progressive civic culture are probably more likely to adopt reforms

like initiatives as well being more likely to vote. We must account for baseline differences

across states before any valid comparisons can be made across states with and without direct

legislation. We argue that past studies have drawn erroneous conclusions about the effects

of the initiative process because they have not accounted for such baseline differences across

states or taken into account causal heterogeneity.

First, we discuss why we might expect states with initiatives to have higher levels of

voter turnout. Explanations for why citizens vote (or fail to vote) tend to be based on one of

three general models of political participation: the socioeconomic status model, the rational

choice model, or the mobilization model. The most controversial of these three models is

the rational choice model, which tends to focus on the instrumental calculations behind the

decision to participate in politics. Under this perspective, one votes if the following is true:

PB − C > 0

where P is the probability that one’s vote is decisive, B is the net benefit from having one’s

preferred candidate win, and C is the net cost of voting. This model describes the “calculus
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of voting” as one where voting occurs if the benefits of voting and the probability of being

decisive outweigh the costs of voting (Downs 1957; Riker and Ordeshook 1968). While it is

difficult to precisely define the size of B and C, P is equal to 1/n, where n is the size of the

electorate. As such, the probability of being decisive in most elections is very small; making

it unlikely that the benefits ever outweigh the costs no matter their size. This model of

participation has been widely criticized, and even Riker and Ordeshook acknowledged that

purely instrumental calculations are insufficient to cause people to vote. They introduced a

term for the experiential benefits of voting to account for the fact that the decision to vote

is more than a cost benefit analysis on the part of citizens. While the calculus of voting

model has been criticized on many fronts and revised in a number of ways, it remains a

useful model for understanding voter turnout as it helps focus attention on the incentives

for participation.2

The calculus of voting model provides an explanation for why the presence of ballot

initiatives might increase participation in elections. The presence of a ballot initiative might

change the calculus of voting in two ways. First, an initiative may reduce the size of P .

Ballot initiatives reduces the size of the electorate participating and therefore increases P .

The reduction in P , however, is likely to be trivial in most instances. Even in Wyoming,

nearly 200,000 citizens voted in 2004. While P might be quite small in local elections,

it is unlikely that initiatives reduce the probability of being decisive enough to matter in

state elections. Ballot initiatives can, however, increase the benefits of voting and more

importantly make those benefits more salient.

In a presidential or Congressional election, voter estimates of B must be imprecise. Elec-

toral promises from candidates are often necessarily general and possibly ambiguous. Even

if a candidate were to promise a large tax cut or a large increase in targeted public goods,

once elected the politician may renege on the promise and even presidents can do little im-

mediately without Congressional approval. Thus electoral victory does not ensure the payoff

2Whiteley (1995) provides a useful overview of the debate over rational choice models of participation.
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of B. In contrast, initiatives often have precise payoffs (a reduction in taxes or a ban on

smoking) and become law in a relatively short period of time if not immediately after the

election. Therefore, initiatives are more likely to provide immediate and precise payoffs to

voters which makes the benefits of voting more salient.

While it would appear that initiatives can increase the benefits of voting, the nature of

initiatives makes the incentive to vote based on initiatives conditional. This conditionality

is due to the differing content of initiatives: not every initiative promises clearly defined

benefits. While Proposition 13 in California offered an obvious payoff to a well-defined

constituency through lower property taxes, the benefits of many initiatives are diffuse and not

well defined. For example, Proposition 60 in California required that all parties participating

in a primary election would advance their candidate with the most votes to the general

election. Passage of this initiative would provide a diffuse to negligible benefit for most

voters. The promised benefit of an initiative such as Proposition 60 may not be enough

to outweigh the costs of voting in that election for many voters. The conditional nature of

initiative content also implies that the number of ballot initiatives is not necessarily indicative

of increased turnout. Five initiatives without defined benefits may not increase turnout as

much as a single initiative promising an obvious benefit. Recent work has demonstrated

the voters are sensitive to the costs of voting in the form of the weather, so voters may be

sensitive to the benefits through initiatives (Gomez et al. 2007).

Initiatives, however, certainly do not guarantee increased levels of voter turnout. Of

course, given the size of P and C, the promised benefit of any initiative may not be enough to

spur one to vote beyond initial inclinations. Or perhaps only those with sufficient individual

resources will understand the benefits. Moreover, passage of an initiative does not guarantee

it will be enacted. Many initiatives depend on cooperation from the state legislature, and

there is evidence that state politicians do not always cooperate (Gerber et al. 2001). From

a theoretical standpoint, then, it is unclear whether we should expect differences in voter

turnout across states with and without direct legislation. The empirical literature, however,
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offers an unequivocal answer. Several studies in the extant literature have found that states

with initiatives have higher levels of voter turnout than states that do not (Tolbert et al.

2001; Smith and Tolbert 2004; Tolbert and Smith 2005).

3.1 Milwaukee Ballot Initiative

One of the difficulties with trying to make causal inferences about ballot initiatives is that

this political institution is confounded with a variety of other state level institutions and the

political culture which lead to the adoption of the initiative process itself. Because of this, it is

nearly impossible to disentangle the effect of ballot initiatives from a host of other state level

institutions such as absentee voting requirements and voter registration laws like election

day registration. To avoid the difficulties of trying to make counterfactuals comparisons

across states, we adopt a within-state design (Keele and Minozzi N.d.). That is, we rely on

a comparison within the same state. The city of Milwaukee is one of many cities with an

initiative process. What distinguishes it from many other cities with the initiative process is

that the state of Wisconsin does not have initiatives. Most municipalities with initiatives are

also in states with initiatives. Thus municipal initiatives typically appear along state-wide

initiatives. Here, we are able to focus on an initiative that appeared on the ballot within the

city limits of Milwaukee but did not appear on the ballot in the municipalities that surround

Milwaukee and are also within Milwaukee county.

For the 2008 election, a coalition of local labor, educational and community organizations

led by 9to5, the National Association of Working Women, helped place an initiative on the

ballot that mandated all private employers in the city of Milwaukee to provide one hour of

sick leave for every 30 hours worked. The initiative passed receiving slightly more than 68%

of the vote. It was struck down by courts shortly after the election. On the county wide

ballot, citizens also voted on a sales tax increase which passed as well. Thus we are able to

isolate the effect of an additional high profile initiative on the ballot. We think this particular

initiative provides a useful example for understanding the effects of initiatives on turnout
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more generally. The initiative was easy to understand for voters. The exact language on the

ballot was as follows:

Shall the City of Milwaukee adopt Common Council File 080420, being a substi-

tute ordinance requiring employers within the city to provide paid sick leave to

employees?

This is also an issue that affects most voters and should be highly salient and received

considerable attention. We found 64 different mentions of this initiative in the local news

papers from July up until election day. Many initiatives ask voters to decide on more complex

or less salient policy matters. But here we focus on a ballot initiative with easy to understand

consequences that would be widely felt by citizens. Another key advantage to our design

is that county is held constant. Election administration is conducted at the county level,

and we might worry that a wealthy suburban county may spend more on polling places

or voting technology. In our design county level confounders are held constant. Figure 2

contains a map of Milwaukee county. The areas in yellow comprise the city of Milwaukee

which is surrounded by 17 suburban areas that are considered Minor Civil Divisions by the

Census. Six of these municipalities do not share a border with Milwaukee while the rest

have contiguous borders with the city to varying degrees. While these are suburban areas,

these do not represent recent movements to the suburbs. While there has been substantial

growth in the suburbs this growth has occurred much farther west along the I94 corridor

in Waukesha county. Unfortunately school districts do not overlap city limits. We use

school performance data to evaluate whether a clear divide exists near the city limit. Basic

comparisons of Milwaukee to these municipalities clearly demonstrate that the city is more

ethnically diverse has lower housing prices and incomes. Census data from 2000 reveals clear

divisions. Median household income in the city is just under 34,000 dollars while it is nearly

54,000 dollars in these suburbs. The percentage of African-American residents that are of

voting age in Milwaukee is 29% while it is less than 1.5% in these suburbs. The difference

in median housing value is nearly $60,000. While the percentage of high school graduates
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is nearly identical, nearly 21% in the suburbs have a college degree while just over 12% in

the city have a college degree. We could try to adjust for such differences via regression of

matching. The goal here is to understand whether exploiting the city limit as a discontinuity

lends credibility to our inference. We now turn to details of the analysis.

4 Data

For our analysis, we merged data from four sources. In some instances, we used geographic

software to perform the data merges as we describe below. Our main data sources is the

Wisconsin Voter File, the database of registered voters maintained by the State for admin-

istrative purposes. The voter file for Wisconsin contains a limited number of covariates:

date of birth, gender, and voting status. Wisconsin does not record either race or party

registration in the voter file. While we do not have individual level measures of education

and income, voting status is recorded for past elections this forms a key covariate in our

analysis.

The rest of the data we use is aggregated to differing geographies. Most of the aggregate

data is Census data in one of two forms. First, we collected block level data. Blocks are

the lowest unit of census geography. The number of covariates available at the block level,

however, is limited. At the block level, we have measures for the percentage of African-

Americans, Hispanics, and minorities, as well as median-age. For the 2000 census, block

group data provide a richer set of covariates. At this level, we used the percentage with

a high school degree, the percentage with a college degree, median income, the percentage

of unemployed, the percentage below the poverty level, the percentage married and the

percentage of foreign born. We also collected measures on housing characteristic at the

block group level. These measures included median housing values, the median rent asked

and the percentage of owner occupied housing units. A discontinuity in housing values

along the Milwaukee city limit is one obvious indication that our design is not identified.

Finally, we also collected data from the Wisconsin Board of Elections. Data from the Board
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of Elections is aggregated to the ward level, the precinct equivalent in Wisconsin. Here,

we collected partisan vote shares for Federal offices and the governor as well as ward level

turnout measures for the 2004 and 2006 elections.

5 Analysis

We next outline the two forms of analysis that we use to evaluate the GD design. We use

Geographic Information Systems (GIS) techniques for both data management as well as

to locate voters and calculate the coordinates needed for measuring spatial distance to the

discontinuity. Later once we completed the GIS stage of the analysis, we developed statistical

techniques to assess the identification assumption, estimate treatment effects, and account

for spatial patterns in the data.

5.1 Geographic

It may be possible to avoid using GIS techniques when using a GD design. We would

argue, however, that without GIS the GD design is significantly weakened. GIS software

allows analysts to more fully exploit geography and spatial proximity. Here, we outline

the geographic analysis we performed to implement the GD design in Milwaukee County.3

First, we geocoded the voter file. Geocoding is the process of converting addresses into a

coordinate system typically that of latitude and longitude. Geocoding allows us to know

the distance between voters and the city limit which forms the discontinuity of interest.4

Geocoding allows us to develop a score that reflects the two dimensional geographic space.

Once we completed the geocoding, GIS software allows us to merge the individual level data

from the voter file with covariates collected from larger geographies. For example, we would

like to use both census data and election data which is gathered at the block, block group,

or precinct level. Once geocoding is complete, we were able to locate each voter within the

appropriate block, block group, and ward. This effectively merges each voter with the data

3We performed all the geographic analysis in ArcgGIS 9.4.
4Geocoding requires taking formatted addresses for each voter. These addresses are then compared to a

known database of addresses and street locations.
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we collected at the three different geographies.

One might assume we also used GIS software for calculating the score, the distance to the

geographic discontinuity. Others analysts have used GIS software to calculate the distance

between voters and politically relevant geographic points. Brady and McNulty (2011); Haspel

and Knotts (2005) use GIS software to calculate the distance between voters’ addresses and

their polling location. The method used by these analysts calculates the shortest distance

from each voter’s address to the point of interest. In our case that would be the Milwaukee

city limit. Such a distance can be calculated as either the driving distance along streets or

as a direct distance as the crow flies so to speak. Other work on voter turnout has found

little difference between these two distances (Brady and McNulty 2011; Haspel and Knotts

2005). As we demonstrated in Section 2 this distance does not identify the GD design. This

distance is not spatial in the sense that while it calculates the distance to the boundary it

does not measure distance along the boundary. We did calculate such a distance and use it

for illustrative purposes later.

We can use the latitude and longitude obtained from the geocoding to calculate the

spatial distance between voter residences and the city limit. One might imagine that a simple

application of the Euclidean distance with the points defined by latitude and longitude would

be sufficient for calculation of the score in the GD design. This would be appropriate if voters

resided in a plane, but the Earth is a sphere. Naive Euclidean distances calculated between

geographic locations can severely overestimate the distance (Banerjee 2005). There are two

standard alternatives to the naive Euclidean distance: the geodetic and chordal distance.

We use both the geodetic and chordal distance which is a rescaling of the Euclidean distance.

The chordal distance is very close to the geodetic distance for locations that are less than

2000 km apart. The additional advantage of the chordal distance is that it allows for valid

calculations of spatial correlations which the geodetic does not allow (Banerjee 2005).

Finally, we used GIS software for a number of smaller tasks. First, we created what is

called a buffer around the city limit. The buffer is a spatial object that records which voters
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fall within a specified distance of a geographic boundary here the city limit. We used a buffer

to record which voters are within 50, 100, 200, 300, 400, 500, 750 and 1000 meters from the

city limit. We use the buffer first as a modified naive score. Most uses of the GD design

simply compare bands a fixed distance along the border. Using a buffer as the score will not

identify the design since again this is not a spatial distance. We later combine the buffer

with the chordal distance as a method of pruning the data for a more local estimate. Third,

we use GIS software to divide the city limit into equal parts. In a GD design, we are able

to make the estimates more local into two ways. One is by using the buffer to restrict the

analysis to within some distance of the city border. We can also make the estimate more

local by using one part of the city limit instead of the entire boundary. For example, we

might only wish to compare the part of the city limit where Milwaukee borders the inner

suburb of West Allis. We can accomplish this by using GIS software to divide the city limit

into equal lengths and restrict the analysis to one of these locations. Finally, even though

the treatment effect estimate identified in the GD design is a plane, for practical purposes

we need actual points on the city limit to use for the calculation of treatment effects. We do

this by dividing the city limit into points define by latitude and longitude spaced at equal

intervals of 100 meters. Armed with these geographic tools, we now turn to more standard

statistical tools.

5.2 Statistical

The first goal in our statistical analysis is quite basic. While we have proven that identifica-

tion of the GD design requires a two dimensional score, the last section demonstrates that

development of such a score is fairly trivial. Geographic measures of chordal or geodetic

distance serve this purpose quite well. We argued in Section ?? that the key assumption in

an RD design, continuity of the conditional regression function, is vulnerable to violation in

the GD design since we might expect that voters will precisely sort around the discontinuity.

That is, voters might choose to live either in or outside of Milwaukee due to differences in
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property taxes, schools, housing, or a variety of other amenities. Thus in any GD design,

analysts must carefully assess the plausibility of the continuity assumption. Indeed, most

of our analysis seeks to understand the plausibility of this assumption. Once we decide the

assumption is plausible, estimation of treatment effects may proceed. We start by outlining

one method best suited to assumption assessment but poorly suited to estimation treatment

effects. We then outline a method for estimating treatment effects, with limited ability to

assess the continuity assumption.

5.2.1 Balance Analysis

We are concerned that the continuity assumption does not hold due to the ability of voters

to sort around the boundary of interest in this case the Milwaukee city limit. Our method

for understanding the quality of this assumption is based on standard practice in RD designs

where the analyst looks for changes in pre-determined characteristics at the discontinuity. In

other words, one looks for jumps in the distributions of pre-determined characteristics around

the discontinuity. In our context, this means looking for sharp differences in covariate values

round the Milwaukee city limit. For example, the most important covariate we have is voter

turnout in previous elections where there were no initiatives on the ballot. While there

might be clear differences in past turnout between the city and its immediate suburbs, those

differences should decrease the closer we get to points along the city limit.

Here, we use the concept of balance-the degree of discrepancy between treated and control

units-on observable characteristics from the matching literature to assess the continuity

assumption. With matching estimators, once matching is complete the goal is for observed

pretreatment characteristics to be nearly identical across treatment and control groups. The

same is true in an RD design, but balance should be a function of the score and should

improve as one moves closer to the discontinuity. We apply this logic by testing whether

balance improves as function of distance to the discontinuity, here, the city limit. We assess

balance as a function of distance using 27 covariates. The list of covariates that we use

are in Table 1. The covariates are measured at four different levels of aggregation from the
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individual level up to the block group and precinct level which are fairly similar in size. In

Milwaukee county there are 4,388 block groups with the smallest having a population of 389

and the largest being 6,889 with a mean population of 1,222. In Milwaukee county there are

6278 precincts with an average of nearly 1700 voters. Of course, balance in larger units like

block groups should improve with diminishing returns as the distance to the city limit gets

smaller. For example, moving from 300 to 200 meters will do little to improve balance at

the block group level since blocks are about 200 meters and block groups be definition are

composed of several blocks.

We do balance assessment six different ways. First, we simply compute balance across

the entire treated and control populations. This provides a basic baseline balance assessment

for comparisons. We, next, assess balance with two methods that are what we call spatially

naive. That is they are based on concepts of the score that do not measure spatial distance to

the discontinuity. One spatially naive method would be to simply use the buffers or distance

intervals from the city limit. That is we have defined intervals of 50, 100, 200, 300, 400, 500,

750, and 100 meters on either side of the Milwaukee city limit. We calculate balance on the

covariates within each of these buffers. We also use one other spatially naive method. As

we mentioned earlier, one can calculate a simple nearest distance to the city limit. We use

this naive distance with a simple matching algorithm. Matching on the naive distance is a

slightly more refined version of using the buffers which are a form of simple exact matching

within buffers.

We contrast these naive methods with methods that use a two dimensional score that

accurately reflects spatial distance. First, we repeat the matching exercise on distance but

replace the naive distance metric with the chordal distance. The chordal distance measures

not only distance to the boundary but also along the city limit. Next, we repeat the matching

on chordal distance with the buffers. That is we restrict the sample to those within the

buffer intervals and then match on the chordal distance. Note we use the buffers not as

strict intervals but to limit the sample to those at least that far from the city limit. For
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Table 1: Balance Covariates

Covariate Measurement
Level

% Hispanic 18 yrs or older Block
% Black 18 yrs or older Block
Median Age Block
Median Household Income Block group
% College Graduates Block group
% Foreign Born Block group
% Owns Home Block group
% Below Poverty Level Block group
% Unemployed Block group
% Urban Block group
Median Home Price Block group
% High School Graduates Block group
Median Rent Asked Block group
Median Rooms Block group
Median Rent Asked Block group
% Owner Occupied Block group
President Democratic Vote Share 2004 Precinct
U.S. House Democratic Vote Share 2004 Precinct
U.S. House Democratic Vote Share 2006 Precinct
U.S. Senate Democratic Voter Share 2006 Precinct
Aggregate Turnout 2004 Precinct
Aggregate Turnout 2006 Precinct
Male Individual
Age Individual
Turnout 2000 Individual
Turnout 2002 Individual
Turnout 2004 Individual
Turnout 2006 Individual
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example, the 300 meter band includes that are no more than 300 meters from the city limit

not people that are between 200 and 300 meters from the city limit. Finally, we examine

the quality of balance by increasing locality in a second dimension. Clearly by using smaller

buffers, the area of estimation becomes more local. But even with the smallest buffer of 50

meters, we are using the entire city limit. We might suspect that some parts of the city limit

are more comparable to some suburbs than others. For example, cursory examination of

Census data indicates that the two western suburbs of West Allis and Wauwatosa are more

comparable to Milwaukee than Shorewood and Glendale in the Northeast. Here, we use the

city limit intervals to compare various parts of the city limit to the suburbs. We divided

the city limit into ten different equal intervals. We then repeated the chordal matching with

buffers within these smaller intervals around the city limit.

Importantly, we apply matching not because we are invoking the selection on observables

assumption but simply as a method for assessing the quality of the continuity assumption

in this GD design. The key difference between what we do and a more standard matching

analysis is that we do not match on any of the 27 observed covariates that we think might be

unbalanced due to sorting around the city limit. That is we want to see if balance improves as

a function of distance to the discontinuity. Therefore, we only match on geographic distance

measures in various forms. We use a simple matching method that is held constant. That is

anytime we match we rely on nearest neighbor matching with ties broken randomly. We also

match with replacement. While a balance analysis is useful for understanding whether the

continuity assumption holds, it doesn’t provide us with an obvious estimation method short

of relying on matched differences. We next propose an estimation method that is faithful to

the spatial nature of the GD design.

5.2.2 Local Polynomial Estimation

While standard methods of balance are perfectly suitable for trying to assess how well the

continuity assumption holds, they do not provide us with a coherent strategy for estimat-

ing treatment effects. Moreover, the estimation of such effects is complicated by the fact
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that in the GD design continuity doesn’t identify a point estimate but instead an infinite-

dimensional curve of treatment effects. We develop a nonparametric kernel density estimator

that we can use to both assess balance and estimate treatment effects. Our estimator being

nonparametric is relatively flexible but also allows us to remain faithful to the spatial aspects

of the GD design. We use this kernel density estimator to both estimate treatment effects

and assess the continuity assumption.

Kernel density smoothing is a standard form of nonparametric regression estimation that

uses weighted moving average smoothing to estimate a nonparametric conditional expecta-

tion. In a standard kernel density estimator, a weighted mean is calculated within bins of

the data. Data close to the middle of the bin, the focal point, are weighted more heavily

than observations farther from the focal point. This requires a measure of distance from the

focal point. The standard measure of distance is

zi =
(xi − x0)

h
. (1)

The term zi measures the scaled and signed distance between the x-value for the ith ob-

servation and the focal point: x0. The scale factor, h, is called the bandwidth of the kernel

estimator, and it controls the bin width. Of course, h controls how smooth or rough the

nonparametric estimate will be. A weighting or kernel function K(·) is applied to the signed

and scaled distances, which attaches the greatest weight to the observations that are close

to x0, with weights decreasing symmetrically and smoothly as the value of |z| grows. This

produces the set of weights wi = K[zi]. In our application, we use the Gaussian or normal

kernel, which is simply the normal density function applied to the values of zi. The weights,

wi, are then used to calculate to the local weighted average:

f̂(y|x) =

∑n
i=1wiyi∑n
i=1wi

(2)

A standard generalization of kernel density estimation that reduces its poor boundary
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behavior is local polynomial regression, which estimates the regression function by fitting a

polynomial at the focal value x0 weighting observations with the kernel weights wi. When

the polynomial is of degree one, the procedure is called local linear regression. We adopt a

multivariate local linear regression estimation method to provide adequate estimates of the

treatment effect curve identified by the GD design. First, the two-dimensional focal point

becomes the latitude and longitude of a point on the discontinuity boundary and thus has

two elements: x0 = (x00, x01). We define x1 as a vector of latitudes and x2 as a vector of

longitudes. We calculate spatial-based kernel weights as:

wi = K[(x1 − x00)/h]×K[(x2 − x01)/h] (3)

where is K remains the Normal density. We then regress the outcome Y on X, a matrix with

a constant and focal-point-deviated latitudes and longitudes using weighted least squares

(WLS) with wi as the weights. The predicted value of Y from this WLS regression using

only observations in the treatment area serves as a point estimate for the treated regression

function at x0. Similarly, the predicted value of Y using only observations in the control

area serves as a point estimate for the control regression function at x0.

We repeat this for each point of latitude and longitude on the city limit. From the two

separate applications of the estimator to the treated and control populations, we define two

vectors: ŶT and ŶC . These vectors are indexed by the number of points of latitude and

longitude along the city limit. For example, if one spaces the points at 100-meter intervals

there are 1752 points, and if one uses 250-meter intervals there are 557 points . We can use

the difference of ŶT and ŶC in two ways. If we use a predetermined characteristic such as

pre-treatment turnout as the outcome in the WLS regression, we can assess the continuity

assumption in the GD design. More usefully, we can identify areas along the discontinuity

where the assumption is most likely to hold. That is, we can identify areas of the city

border where pre-treatment characteristics do not differ. Using this method to assess a
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large number of pre-treatment characteristics is probably infeasible. The advantage of the

balance approach is a large number of covariates can be analyzed simultaneously. The kernel

density method would require 27 iterations for each covariate. It is best applied to a few

key covariates, like past turnout in our study. However, if we use the outcome of interest,

turnout in 2008, our estimator provides a spatial estimate of the treatment effect of interest.

Since our estimator iterates over a set of point along the discontinuity, it provides treatment

effect estimates that vary spatially and approximates the treatment effect curve identified in

the GD design.

The nonparametric nature of our estimator requires dealing with a few additional com-

plications. One is choice of the bandwidth parameter. Here, we rely on cross-validation for

bandwidth selection. Using the diagonal elements of H = X(X ′X)−1X ′, hi, for each ith

observation from the WLS regression, we can calculate ∆cv, the cross-validation prediction

error as

1

n

∑ (yi − ŷi)2

(1− hi)2
. (4)

Finally there is the matter of inference. The analytical standard errors from the WLS regres-

sion are invalid since the weights are non-parametrically estimated. A natural alternative is

the bootstrap. Since the bootstrapped statistic is a weighted regression model, this statistic

is smooth in the mean and thus bootstrap theory should hold. We are currently working on

appropriate bootstrap algorithms that respect the spatial quality of the data, and a theo-

retical derivation of a spatially weighted asymptotic variance-covariance matrix. Since these

calculations are currently in progress, the results section focuses on point estimation and not

yet on statistical inference.

6 Results

Here we focus on how balance changes as a function of the distance to our discontinuity

boundary, the Milwaukee city limit. In every analysis, we checked balance on the 27 different

covariates in Table 1. Of these measures, we focus particularly on two: individual level
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turnout in 2004 and 2006. We do this for two reasons. First, these measures represent

placebo outcomes, since turnout rates in 2004 and 2006 occurred before the 2008 initiative

was on the ballot in Milwaukee. Covariates like education are simply proxies for these

measures of turnout. Second, these covariates are among the few individual level covariates

in our study. As such we should be able more precisely understand how balance changes

as a function of distance as opposed to measures at the block group level which comprise

relatively larger geographic areas. There are a wide variety of ways in which we could report

the level of balance. We focus on two basic measures. The first is the median difference

in a quantile-quantile (QQ plot). We report this in two ways. First, we report the average

median QQ difference across all 27 variables that we check for balance. Second, we report the

average median QQ difference for just the two individual level turnout measures. While this

median difference doesn’t have an interpretable scale, we always compare it to the baseline

from the unadjusted data. Recall that for every analysis, we hold the matching method

constant by using nearest neighbor matching. The question of interest is whether balance

improves as the distance between the two-dimensional score and the geographic discontinuity

decreases.

We start with the unmatched data and match on a naive distance. That is, this measure

only considers how far voters are to the city limit, but not their location along that border.

The results are in Table 2. The numbers from the unmatched data provide our baseline.

What is immediately clear is that turnout is much lower within the city of Milwaukee as

compared to the suburban areas within the county. In 2006, the difference in turnout was

nearly 15 percentage points. Given the disparities in education and income between the city

and suburbs, this difference is not surprising. Matching on the naive distance measure does

improve balance, but the differences are still substantial, as turnout in 2006 is still lower

by almost eleven percentage points. Of course, as we demonstrated, this uni-dimensional

measure does not identify the estimates from the GD design.

Next, we examine balance among groups of voters in bands or buffers of increasing

26



Table 2: Balance Results Based on Unmatched Data and Naive Geographical Distance

Unmatched Matched Naive
Distance

Average QQ Median Difference 0.168 0.124
Turnout 2004 -7.9 -5.9
Turnout 2006 -14.5 -10.9
Average QQ Median Difference 0.112 0.042
Placebo Outcomes
Note: aCell entry is treated minus control

difference in turnout.

distance from the city limit. That is, we start with all voters that live within 1000 meters of

the city limit. We then narrow this buffer to widths of 500, 400, 300, 300, 100 and 50 meters.

Using all voters within 1000 meters of the city limits produces results that are better than

the unmatched data and comparable to the use of the naive distance measure. For example,

the ratio for the median QQ difference on the two turnout measures is nearly one-to-one

when comparing the largest buffer to the naive distance. Smaller buffers, however, improve

balance considerably. We see the balance on the turnout variables is best for the 200 meter

buffer. The difference in turnout percentages is now just under two and five points for 2004

and 2006 respectively, though overall balance is little better than that based on the naive

distance. Most existing designs based on a geographic discontinuity use bands of this type.

For example, Black (1999) uses a buffer of two-tenths of a mile which is slightly larger than

300 meters. Of course, as we have shown, such design need to recover the treatment effect

even if continuity holds in two dimensions. That said, even this naive method substantially

improves balance on the turnout measures, which suggests that even a naive consideration

of distance may be useful in some applications.

In Table 4 we account for spatial distance to the discontinuity. First, we do this by

simply matching on the spatial distance instead of the naive distance. This allows us to

account for distance both from and along the Milwaukee city limit. Next, we combine the

spatial distance with the buffers zones along the city limit. For buffers of 1000 and 500
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Table 3: Balance Results Based on Decreasing Zones Around the Milwaukee City Limit

1000m 500m 400m 300m 200m 100m 50m
Buffer Buffer Buffer Buffer Buffer Buffer Buffer

Average QQ Median Difference 0.157 0.156 0.153 0.144 0.122 0.109 0.09
Turnout 2004a -5.1 -4.6 -4.4 -4.8 -1.8 -3.5 -5.4
Turnout 2006a -8.1 -7.5 -7 -7.1 -4.5 -5.2 -6.1
Average QQ Median Difference 0.034 0.031 0.029 0.030 0.016 0.022 0.029
Placebo Outcomes
Note: aCell entry is treated minus control difference in turnout.

meters overall balance is much improved compared to buffers without the spatial distance.

For 1000 meters, the average median QQ distance is 0.058 compared to 0.156. Thus, balance

is better by nearly a factor of three. Once we move to a buffer of 400 meters, balance on

the turnout variables improves dramatically. For a buffer of 300 meters, the difference in

turnout is one and less than three percentage points. Note that overall balance does not

improve much as the buffers shrink. This is not surprising given that it is impossible to make

balance better in the block group level measures for smaller distances. The balance in this

analysis is impressive. The reader should keep in mind that we have not matched on any

of the 27 measured covariates, and yet we see impressive improvements in balance. Thus

we might have some confidence that the geographic RD design is identified. Or at the very

least we might conclude that considering spatial distance might add something beyond only

using observable covariates.

Often, using a more local estimator increase the interval validity of an design. In fact, the

RD design is built on this very concept. In the geographic RD, we can make the estimates

more local in two ways. One method is by decreasing the width of the buffer around the

border. Clearly a 100 meter buffer will produce a more local estimate than a 500 meter

buffer. As we observed in Table 4, the more local design produced a better counterfactual.

Within the geographic RD design, we can increase locality in another way. Thus far, we

have used the entire length of the Milwaukee city limit. But we might suspect that by only
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Table 4: Matched Balance Results

Chordal 1000m 500m 400m
Distance Buffer Buffer Buffer

Average QQ Median Difference 0.050 0.058 0.086 0.073
Turnout 2004a 8.5 0.9 2.4 2.5
Turnout 2006a 26.6 13.5 9.9 1.9
Average QQ Median Difference 0.088 0.036 0.032 0.011
Placebo Outcomes

300m 200m 100m 50m
Buffer Buffer Buffer Buffer

Average QQ Median Difference 0.065 0.067 0.071 0.067
Turnout 2004a 2.7 3.4 1.3 -2.1
Turnout 2006a 1 4 4.5 1.7
Average QQ Median Difference 0.009 0.019 0.014 0.01
Placebo Outcomes
Note: aCell entry is treated minus control difference in turnout.

using parts of the boundary balance might improve. For example, along parts of the western

part of the Milwaukee city limit are older suburbs that appear more comparable than the

more affluent areas along the northeastern part of the city limit. We use a basic method

of subclassification to make the estimates more local in the second spatial dimension. We

divided the city limit into ten subclasses of equal distance. Dividing the city limit up into

ten subclasses makes for sub-boundaries of length just over 17.5 kilometers. In Table 5, we

repeat the balance analysis used on the entire metropolitan boundary for one of these zones.

The results are comparable to those to based on the entire boundary. We might expect a

smaller distance along the boundary to bring about further improvement. For example, we

might instead use twenty subclasses.

Next, we look at results based on the local linear regression estimator. As mentioned

above, this approach involves estimating the regression function at different points on the

discontinuity boundary to produce a treatment effect curve. We used this estimation pro-

cedure to estimate the treatment effect curve for 2004 and 2006 turnout shares, two crucial

covariates since they are pre-treatment realizations of our outcome of interest (2008 turnout

29



Table 5: Zone 6 Balance Results

Chordal 1000m 500m 400m
Distance Buffer Buffer Buffer

Average QQ Median Difference 0.061 0.059 0.076 0.079
Turnout 2004a 8.6 8.3 3.8 2.4
Turnout 2006a 4.6 12.4 7.8 3.8
Average QQ Median Difference 0.038 0.052 0.029 0.016
Placebo Outcomes

300m 200m 100m 50m
Buffer Buffer Buffer Buffer

Average QQ Median Difference 0.080 0.089 0.081 0.099
Turnout 2004a 1.5 1.9 6.4 14.1
Turnout 2006a 1.7 -1.6 3.2 5.5
Average QQ Median Difference 0.009 0.009 0.024 0.049
Placebo Outcomes
Note: aCell entry is treated minus control difference in turnout percentage.

shares). We report the results for 2006 turnout; similar results for 2004 turnout rates are

available upon request. We estimated the treatment-control difference in 2006 turnout,

ŶT − ŶC , at 557 different points on the Milwaukee city boundary. These points were ob-

tained by applying 250-meter intervals along the city boundary, excluding the fractions of the

boundary that overlap with the Milwaukee County boundary and consequently do not have

appropriate close control observations. We estimated all differences within the 300-meter

buffer.

Figure 3 reports a histogram of the absolute values of the estimated 557 treatment-control

differences. Since turnout is expressed in shares, the absolute value of these differences ranges

from 0 to 1. As can be seen, there is wide variation across city boundary points. While

some points have treatment-control differences of less than 1 percentage point, others have

differences as large as 80 or 90 percentage points. Since this is a pre-treatment covariate,

if the geographic RD assumptions held at all points on the boundary, one would expect all

these differences to vanish and become statistically indistinguishable from zero. Since our

standard errors are still not available, we use the unadjusted treatment-control difference as a
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baseline. This is the simple (absolute value of the) difference in means in 2006 turnout rates

between treatment and control areas within the 300-meter buffer, which is equal to 0.083. As

shown in the histogram, 46% of the points have treatment-control differences that are smaller

than the unadjusted difference. This suggests two important conclusions. First, explicitly

incorporating the spatial local of individuals can increase balance across treatment and

control areas even within a small buffer around the boundary, and thus provide observable

evidence about the plausibility of the continuity assumptions necessary for the identification

of the treatment effect curve of interest. Second, it suggests that this approach will detect any

heterogeneity in the plausibility of these assumptions across different points in the boundary,

since points where balance in crucial pre-treatment covariates is never achieved by means

of a spatially weighted local linear regression are evidence against these assumptions. In

other words, this method, by estimating treatment effects for a large number of points along

the discontinuity boundary, provides a way to detect areas where the geographic RD may

be more or less likely to hold. Both suggestions stem from the same principle: if indeed

identification of the effects of interest is coming from the geographic discontinuity, balance

measures should improve when counterfactual groups are obtained by explicitly incorporating

a two-dimensional measure of distance.

Since each treatment-control difference is attached to a point on the city boundary, we

can effectively use this geographic information to place the estimated treatment effects on

the map. This is done in Figure 4, where a map of Milwaukee County displays the estimated

treatment-control differences for the 557 points on the city boundary where we estimated

these effects. Black points are those where the estimated absolute value of the treatment-

control difference is less than the unadjusted treatment-control difference in the 300-meter

buffer; hollow points are those where this estimated difference is less than the unadjusted

treatment-control difference. As can be seen, by plotting the treatment effect curve on the

map, we are able to locate in space the points along the boundary where balance improves

when a two-dimensional notion of space is incorporated in the estimation of treatment-control
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differences.

A current limitation of this map is that it now reports point estimates, which are in-

teresting on their own right but do not answer the question of whether the null hypothesis

of no difference between treatment and control areas can be rejected at every point. When

standard errors are available, we will replicate the map in Figure 4, but distinguishing points

where the null hypothesis cannot be rejected from points where the treatment-control differ-

ences in this important covariate are statistically significant. This will give us a better idea

of the portions along the boundary where the geographic RD assumptions are more likely

to hold. Nonetheless, the current map illustrates the general idea behind our approach.

7 Conclusion

The design-based approach holds at its core that unless analysts have an experiment, natural

or randomized, an observable selection process, a discontinuity or some other strong research

design it is difficult to make a compelling case that an estimated correlation is causal. Among

these designs, use of the regression discontinuity design has grown rapidly and is often viewed

as more compelling than other quasi-experimental designs. Lee and Lemieux (2010) argue

that the reason RD design is compelling is that, like an experiment, it is a design and not

an estimation method. For almost any research study, a regression model of some type can

be devised where the outcome is a function of treatment status and other covariates. In

an RD design, either a discontinuity exists or it does not. Moreover, the design predicts

that pre-treatment covariates should not change at the discontinuity, which provides a clear

testable implication of the key assumption. Of course, true discontinuities are somewhat

rare. Geographic boundaries would seem to be one promising avenue given that treatments

of interest often change sharply at relevant geographic boundaries.

The difficulty is that while geographic discontinuities are relatively common, this design

is particularly vulnerable to a violation of the continuity assumption. Lee’s (2008) behavioral

interpretation of the continuity assumption brings to sharp focus the key weakness of the GD
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design. Quite often agents are able to sort very precisely around the boundary that forms

the discontinuity in the design. New York City provides an insightful example. No one

will mistake an apartment in Manhattan for one in the Bronx. Even the difference between

Manhattan south of Houston street is a salient division and few are likely to mistake being

north of Houston for being south of Houston. Thus, understanding whether a specific GD

design is identified requires substantive knowledge and careful evaluation of how observables

behave as distance to the boundary decreases.

This is not to say that the GD design does not hold considerable promise. In our ap-

plication, we find that balance improves considerably near the Milwaukee city limit. We

demonstrate that balance on key covariates improves as a function of the spatial distance to

the city limit. We found that even naive approaches to distance improved balance. This sug-

gests that in this application the Milwaukee city limit is worth exploiting as a discontinuity

instead of simply relying on the ubiquitous selection on observables assumption. Again New

York city provides a relevant example of the promise of the GD design. Fernandez (2011)

details that the line between Queens and Brooklyn is one where few residents really know its

exact location which makes sorting between the two boroughs difficult, but this boundary

does create important administrative differences. In short, while GD designs may be vulner-

able to violation of the continuity assumption, geographic discontinuities may also prove to

be strong designs. Again this decision can only be made on a case-by-case basis. There is

little hope that the GD design can be mass produced as it requires careful attention to not

only the statistical analysis needed to justify the continuity assumption but the geographic

analysis needed to exploit the discontinuity.
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Figure 4: Estimated Tr-Co differences in 2006 turnout along Milwaukee City boundary
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