
Human vs. Machine: A Systematic Comparison of
Village-Level Geocoding Precision

Inken von Borzyskowski∗ Patrick M. Kuhn†

April 29, 2018

Abstract

Geocoded data has become increasingly popular in political science research, with
more than a dozen articles featured in the top journals in the last two years alone.
While geocoded data opens up new avenues of inquiry and increases our ability to em-
pirically assess theoretical predictions, much depends on the reliability of geocoding.
When geocoding the location of survey respondents, towns, or projects, researchers can
employ machine or hand coding. While machine coding is fast, transparent, and repli-
cable, its reliability is questionable, especially when geocoding data from non-English
speaking developing countries that lack reliable maps. We investigate the reliability of
machine-coded geographic referencing tools by comparing them to hand-coded datasets
(based on Afrobarometer data). Relying on various statistical validation techniques, we
show that hand coding in sub-Saharan Africa outperforms a common machine coding
program in terms of precision and quality. We also replicate a recently published study
with machine-coding. Our findings add a cautionary note on using machine-coded
geo-referenced data and the new wave of research relying on such measures.
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Space and geography are important concepts in political science, as well as in related

disciplines such as economics and geography. With the advent of affordable and easy to use

geographic information systems (GIS) software, researchers have increasingly modeled space

explicitly (e.g., Barkan, Densham and Rushton, 2006; Ichino and Nathan, 2013; Nemeth,

Mauslein and Stapley, 2014; Bunte and Vinson, 2015; Warren, 2015). Geocoded data has

become increasingly popular in political science research: a review of the top five political

science journals and a conflict journal1 between 2000 and 2017 reveals that the number of

articles using geocoded data increased from just one article in 2001-2005, to 9 articles in

2006-2010, 27 articles in 2011-2015, and another 12 articles in 2016-2017 alone.

While geocoded data opens up new avenues of inquiry and increases our ability to em-

pirically assess theoretical predictions, much depends on the reliability of geocoding. When

geocoding locations researchers can employ machine or hand coding. While machine cod-

ing is cheap, fast, transparent, and replicable, its reliability is questionable, especially when

geocoding data from non-English speaking developing countries that lack reliable maps.

While machine geocoded datasets in developed countries with good underlying maps have

a high quality, this is unlikely to be the case for developing countries. Despite its increased

use, we know surprisingly little about the quality of machine-geocoded datasets. To date,

there has not been a systematic analysis comparing machine to human geocoded data. How

precise is geo-coding? Is it significantly different from human coding, and if so, what drives

these differences? Do differences matter for substantive results, or under what conditions

can machine coded data be relied upon?

This article addresses these questions by providing a systematic comparison between

the two coding approaches for survey data from 20 sub-Saharan African countries. Given

the countries’ low level of development and the variety of official and native languages,

1Journals included in review are the American Political Science Review, American Journal of Political

Science, Journal of Politics, International Organization, British Political Science Review, and the Journal of

Peace Research
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this can arguably be seen as a hard test for machine coding. We investigate the reliability

of machine-coded geographic referencing by comparing them to human coding (based on

the AidData/Afrobarometer team). Comparing quality and precision between human and

machine geocoding, we show that currently human coding seems to outperform machine

coding in sub-Saharan Africa. Given that result, we consider the implications for applied

work by replicating Nunn (2010) using both human and machine coded data.

Our findings add a cautionary note on using machine-coded geo-referenced data, es-

pecially in the context of developing countries. First, there are significant differences in

precision and quality between machine and human-coded geographic data, with human cod-

ing generally out-perfoming automated data generation. Second, these significant differences

between human and machine codings vary considerably between countries and are system-

atically related to contextual factors, such as the level of urbanization, infrastructure, and

service provision. In addition to more densely populated areas, those locations with paved

roads and post offices are much more likely to be correctly geo-coded by a machine than

locations without such characteristics. Since locations that cannot be geocoded are at times

dropped from the estimation, this has the potential to generate significant bias in estimation

results.

Our replication suggests that the conditions under whether machine/human coding makes

a difference depends on whether the key variables are affected by this lower-quality coding.

In our particular replication, the main results are robust as the effect of the lower-quality ma-

chine coding on the key explanatory variables is relatively small, and urban/infrastructure/

services are not key confounders in the regression model. We conclude that geocoding ex

post is challenging, time consuming, and expensive, and therefore best done ex ante in the

process of local data collection (e.g. fielding a survey). If researches do rely on ex post ma-

chine coding of geographic information, great care is required. Researchers should question

data quality, especially in developing countries, and be aware that (1) the precision and the

declared “quality” of machine geo-coding might be significantly worse than for human-coded
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data, and (2) these differences are non-random, driven by the degree of urbanization and

infrastructure, which are often key confounders. Researchers should not take data quality

at face value and document that results are robust to potential biases of machine-geocoded

data.

Setup

To investigate quality differences between human and machine geocoding, we machine-coded

Afrobarometer (AB) round 4 data and compare it to AidData’s human coding of that same

survey round (BenYishay et al., 2017). Afrobarometer surveys are widely used in researching

African politics and generally considered high quality. They cover a variety of countries

varying in terms of development, colonial history, languages, and political regimes, making

them an interesting test set.

In geocoding AB rounds 1-6, AidData followed a double-blind methodology, originally

developed for geo-referencing development projects (Standow et al., 2011). Using a team of

trained geocoders, coders used the hierarchy of place names provided by the survey to assign

coordinates to each location. Geographic databases such as GeoNames, Google Maps, and

OpenSteetMap were used by two independent coders to find coordinates, reviewing statoids,

encyclopedias, Wikipedia, and government websites to confirm location hierarchy and type.

When coders disagreed, the issue was arbitrated by a senior researcher. We take the resulting

human-coded data as a benchmark against which to evaluate the machine coding.

The machine coding is done using the OpenCage Data’s Geocoder (OCG) application

programming interface (API) (Opencage Data Ltd., 2018) via the Stata module opencagegeo

(Zeigermann, 2018).2 OCG is built on opensource products and open data, including Nom-

inatim and OpenStreetMap, GeoNames, Natural Earth Data, OpenGeoCode, Yahoo Geo-

Planet, and Postcodes.io, and is widely used by both commercial and non-commercial enter-

prises. Unlike other geocoding APIs (e.g., from Google Maps, MapQuest, and Here Maps),

2Also available for R, see https://cran.r-project.org/web/packages/opencage/opencage.pdf.
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the OCG API has several advantages: it has worldwide coverage, performs consistently, can

parse the sparse location hierarchy provided by the AB, and does not restrict the use and

storage of geocodes.

Before geocoding we pre-process the country, region, district, and town/village variables

of the Afrobarometer to improve machine coding performance by trimming unnecessary white

spaces, removing dashes and brackets, typing out abbreviations, replacing special characters,

and making all letters lower case. AB 4 contains 4,294 unique town/village-district-region-

country observations, which we submit to the OCG API for geocoding. In the following

section we compare the geocoding using the OCG to the human geocoded AB round 4.

Comparing Human and Machine Geocoding

We begin by comparing coding precision. Figure 1 depicts the proportion of locations that

were coded at the town/village, district, region, and country level, for both the Afrobarom-

eter and the OpenCage Geocoder coordinates.

While machine coding seems to have been able to code a slightly larger proportion of

locations at the town/village level (62% vs. 58%), it seems to perform worse overall than

human coding. The human coded AB data was able to code all locations at a lower than

country level, whereas the OCG was unable to code more than 13% of locations at any

lower level than the country. Further, the AB coded more than 92% of all observations at

either the district or town/village level, whereas the OCG managed to do so for only 72%.

Moreover, looking more closely at the OCG coding suggests that OCG over-reports coding

precision. Looking at the data we found several instances where a specific town/village

could not be located in districts where the capital of said district had the same name as the

district and where OCG coded the district capital and indicated that the observation was

coded at the town/village level. Our overall quality assessment is further supported by the

cross-tabulation reported in Table 1 below.

While there is a significant overlap with roughly 51% of locations located on the main
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Figure 1: Comparison of Geocoding Quality
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Table 1: Cross Tabulation of Geocoding Precision

OpenCage Geocoder
Country Region District Town/Village Total

Region 71 171 12 67 321
Afrobarometer District 331 101 240 808 1,480

Town/Village 179 329 206 1,779 2,493
Total 581 601 458 2,654 4,294

diagonal, there are fewer observations above the main diagonal (887) than there are below

(1,217). This indicates that there are considerably more locations that were coded at a higher

precision level by human compared to machine coding. Moreover, of the 887 observations

above the diagonal, many of the 808 observations are cases where OCG could not identify

the town/village, coded the district capital instead, and reported too high a precision level.

To compare geocoding quality beyond reported precision levels, we calculate the shortest
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distance between the AB and OCG coordinates in kilometers (km). It ranges from 0km

to 1,515km, with an average of 52.75km (see also Column 1 in Table 2) and a median of

12.45km, indicating that the distribution has a high positive skewness. To get a better

sense of the distribution and differences across the AB precision categories, we calculate the

proportion of machine coded observations that fall within differently sized buffers ranging

from 0-100km (which is the range within which roughly 82% of all observations fall). Figure 2

shows those percentages for all observations (left) and split up by AB precision categories

(right).

Figure 2: Distance Between Human and Machine Geocoding
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Looking at the left-hand graph, we see that only 0.7% of all observations match precisely,

over 27% have a distance of less than 1km, and almost 70% are less than 40km apart. More

interesting, however, is the right-hand graph, indicating that geocoding precision varies
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across the AB precision categories. In line with our findings from Table 1, we observe that

district level coded AB locations have the greatest average distance, followed by region,

and town/village level coded locations. Once again, this difference is largely driven by OCG

recording district capital codings wrongly at a too high precision level when the town/village

could not be found.

Next we look the variation on average distance across the 20 sub-Saharan African coun-

tries included in the AB round 4. Figure 3 reports the average distance in km together with

their 95% confidence interval.

Figure 3: Average Distance Between Human and Machine Geocoding
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Note first, that all average distances are significantly greater than zero, suggesting that

for none of the countries machine and human coding are indistinguishable. Next, note that

the average distance varies quite a bit, ranging from 7km in Benin to over 133km in Malawi

and that there are statistically and substantively significant differences between countries.
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Additionally, note that there are no easily identifiable patterns with regard to country-level

variables explaining these differences. South Africa, the wealthiest county in the list, is

located in the middle, while Burkina Faso, one of the poorest countries listed, is ranked

fourth. Moreover, countries with high (e.g., Benin, Ghana, and Botswana) and those with

low democracy scores (e.g., Lesotho, Zimbabwe, Uganda) are both scattered throughout the

ranking.

Finally, to investigate which location characteristics might be driving geocoding precision

between human and machine coding, we ran a series of linear regressions with country-fixed

effects on distance between AB and OCG. The results are reported in Table 2. The underlying

survey questions and coding are detailed in the appendix.

Column 1 reveals the average distance across all 20 countries and that differences between

countries explain roughly 20% of all variation. Column 2 includes a dichotomous variable

for whether a location is urban or rural. Unsurprisingly, human and machine geocoding

are significantly closer in urban than rural areas. Looking across the remaining two models

(columns 3 and 4), the effect is consistently negative and large. On average the distance

between the human and machine coded coordinates is 12.5km smaller for urban than rural

locations. Column 3 adds two additive indices: one for infrastructure, ranging from 0 to 4,

and one for services, ranging from 0 to 5. While the extent of services at a location does

not seem to affect geocoding precision much, the extent of infrastructure has a statistically

significant and large negative effect: human and machine coding are more similar for locations

with extensive infrastructure compared to those with no infrastructure, even after controlling

for whether a location is urban or rural. This finding is hardly surprising, as the provision

of infrastructure often requires mapping, which feeds into geographic databases underlying

machine coding. Lastly, Column 4 disaggregates the infrastructure and service indices to

assess which components are driving the effect. Among the infrastructure components,

paved roads and access to the sewage system seem to be most important. Being close to

a paved road seems particularly important; it reduces average distance by almost as much
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Table 2: Determinants of Distance Between Human and Machine Geocoding

(1) (2) (3) (4)

Constant 52.752*** 59.920*** 63.046*** 59.764***
(1.269) (1.603) (3.114) (4.113)

Urban -20.812*** -12.669*** -12.540***
(2.657) (3.579) (3.593)

Infrastructure -5.629***
(1.334)

Electric Grid 4.872
(4.160)

Pipped Water -5.525
(3.535)

Sewage Pipe Access -7.598*
(4.200)

Paved Road -11.845***
(3.269)

Services 1.241
(1.046)

Post Office -8.630**
(4.173)

School 0.251
(4.450)

Police Station 1.475
(4.027)

Health Clinic 5.255
(3.338)

Market 3.752
(3.408)

Observations 4294 4294 4294 4294
R-Squared 0.205 0.215 0.218 0.222

Notes: Linear regression on distance between hand and machine coded coordinates
in kilometers. All regressions include country fixed effects. Estimates significant
at the 0.1 (0.05; 0.01) level are marked with * (**; ***). Robust standard errors.
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as a location being urban rather than rural. Among the service components, having a post

office seems important: human and machine coding are on average more than 8km closer for

locations with a post office compared to those without.

Overall, our comparison suggests that there are significant differences between human

and machine geocoded datasets in terms of accuracy. Human coding, at least in the case

of sub-Saharan Africa is currently still more precise than machine coding. Machine coding

quality varies drastically across countries and largely depends on the quality of underlying

databases. Urban locations with greater infrastructure, especially paved roads, access to a

sewage system, and a post office are more likely to be machine coded with high geographical

precision.

Replication

Do the identified differences between human and machine coding matter substantively? To

address this question, we replicate a published and widely cited study and compare its

results using both human and machine coding. Under what conditions should geocoding

differences matter for substantive findings? The extent to which geocoding differences matter

for substantive results likely depends on how much these differences affect key variables in

the model. If measurement differs significantly for outcome, explanatory, or key confounding

variables, results are likely to differ as well. Conversely, if the key variables are largely

unaffected by geocoding differences, then results are likely similar across human and machine

coding.

We replicate a recent study by Nunn (2010) who uses human-coded geographic informa-

tion to show that colonial Christian missions in Africa were effective in converting locals,

and that these effects last until today. We choose this study because it uses geo-referenced

data on the ethnic group and town/village-level, both as explanatory variable and key con-

founders, suggesting that geocoding precision might matter. The explanatory variable –

number of historical mission stations near the respondent’s town – may be influenced by
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geocoding as it relies on the geocoding precision of respondents’ town/village, which also

matters for the constructing of various confounders and whether the location is urban or

rural is controlled for.

Nunn (2010, 147) argues that today’s descendants of ethnic groups which historically

experienced greater missionary contact are today more likely to self-identify as Christian.

To empirically assess this argument, Nunn links information on the geographic location of

Christian missions in colonial Africa to geo-coded AB round 3 data and various location-

and ethnic-specific controls. We attempt a scientific replication of the paper’s main finding

using AB data from round 4, which includes two more countries and more ethnic groups

compared to AB round 3. Given that Nunn’s argument is not specific to any time period or

survey wave, our replication reveals to what extent his result is due to idiosyncrasies of AB

round 3 data. In addition, we compare replication results using human and machine coding.

We construct our replication dataset by following the description in Nunn 2010, using

data on various components (e.g., mission location, colonial rail road, and explorer routes).

We use the Murdock 1959 data on pre-colonial ethnic groups (which Nunn provides on

his website) and the human geocoded AB round 4 data, which we also machine coded as

described above. A detailed description of variables included and necessary but minor coding

adjustments between AB round 3 and 4 can be found in the appendix.

Using Nunn’s (2010) model specification, we focus on the main effect (his Table 1,

Columns 1-3), which is regressing self-reported Christian religion (a proxy for conversion)

on ethnicity- and village-specific mission exposure, using logit models with country fixed

effects, employment and living condition fixed effects, a range of individual-, ethnicity-, and

village-level control variables, and clustered standard errors. Table 3 reprints the original

study’s results in Columns 1-3 and shows our results in Columns 4-6.

The scientific replication largely confirms the main finding from Nunn (2010). Qualita-

tively the results are similar: the coefficients on mission station in ethnic group and village

are positive throughout and significant in most models. A closer look, however, does reveal a
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Table 3: Scientific Replication of Table 1, Columns 1-3 in Nunn (2010)

AB Round 3 (Nunn 2010) AB Round 4 (Human Coded)
(1) (2) (3) (4) (5) (6)

Missions stations among ethnic group 0.036*** 0.144*** 0.029 0.024***
(0.011) (0.044) (0.028) (0.006)

Missions stations in village 0.021*** 0.033*** 0.147*** 0.086***
(0.006) (0.032) (0.031) (0.030)

Individual-level controls 3 3 3 3 3 3

Ethnicity-level controls 3 7 3 3 7 3

Village-level controls 7 3 3 7 3 3

Country fixed effects 3 3 3 3 3 3

Observations 20,755 20,775 20,775 22,538 22,538 22,538
Clusters 185 2,693 185/2,693 228 3,750 228/3,750
Pseudo R-Squared 0.28 0.28 0.29 0.33 0.32 0.33

Notes: The table reports logit estimates where the unit of observation is an individual. Coefficients are reported
with (ethnicity/town/ethnicity-town) clustered standard errors in brackets. All regressions include country fixed effects.
Individual-level controls include age, age squared, a gender indicator, five living condition fixed effects, six employment
fixed effects, and an indicator for whether the respondent lives in an urban location. Ethnicity-level controls include an
indicator variable that equals one if the ethnicity was contacted by a European explorer prior to the colonial period, an
indicator variable that equals one if a railway line dissected the land inhabited by the ethnicity during the nineteenth
century, a measure of the fraction of land suitable for cultivation and the fraction of land within ten kilometers of a
water source, and the log normalized number of slaves exported during the Atlantic and Indian Ocean slave trades. The
village-level controls include the same set of control variables but measured at the village level. Estimates significant at
the 0.05 (0.01) level are marked with ** (***).

few differences. Our effect of the ethnic measure is estimated more noisily; the standard error

in Column 4 is larger than Column 1, while the coefficient size is fairly similar. This might

be due to issues of merging a larger number and more fine-grained ethnic groups reported

in AB round 4 (see Appendix) or due to a weakening of the effect when using more recent

survey data. Furthermore, comparing Columns 2 and 5, the village effect in the replication is

significantly larger than in the original study. The z-score for the test of statistical difference

between these coefficients is 3.99. This might be due to differences in geocoding precision

between the original study and AB 4; both of which were human coded. Lastly, comparing

Columns 3 and 6, which is the preferred specification in the original study, the coefficient on

the ethnic measure is statistically significant but is six times smaller here than in the original

study. The coefficients on the ethnic measure in Columns 3 and 6 are statistically different,

with a z-score of 2.7. Again, this might be due to matching ethnic groups, due to sampling

chance in the Afrobarometer survey, or because the effect is indeed substantively smaller in

more recent survey data. Overall, while qualitatively similar, our replication suggests that
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conversion rates might not be quite as high as suggested in the initial study.

In addition to this scientific replication with more recent data, we also replicate findings

by comparing estimates from human versus machine coding. Table 4 Columns 1 and 2

reprint the results from Table 3 Columns 5 and 6. Table 4 Columns 3 and 4 show the

identical estimations based on machine coded measures, replacing the village-level mission

variable from the hand-coding with the same measure from the machine coding. The results

are quite similar, with no statistical differences between coefficient estimates between human

and machine coding.

Table 4: Comparing Human and Machine Geocoding

Human Coding Machine Coding
(1) (2) (3) (4)

Missions stations among ethnic group 0.024*** 0.025***
(0.006) (0.006)

Missions stations in village AB 0.147*** 0.086***
(0.031) (0.030)

Missions stations in village OCG 0.150*** 0.075**
(0.034) (0.030)

Individual-level controls 3 3 3 3

Ethnicity-level controls 7 3 7 3

Village-level controls 3 3 3 3

Country fixed effects 3 3 3 3

Observations 22,538 22,538 22,538 22,538
Clusters 3,750 228/3,750 3,750 228/3,750
Pseudo R-Squared 0.32 0.33 0.31 0.33

Notes: The table reports logit estimates where the unit of observation is an individual. Coef-
ficients are reported with (ethnicity/town/ethnicity-town) clustered standard errors in brackets.
All regressions include country fixed effects. Individual-level controls include age, age squared, a
gender indicator, five living condition fixed effects, six employment fixed effects, and an indicator
for whether the respondent lives in an urban location. Ethnicity-level controls include an indicator
variable that equals one if the ethnicity was contacted by a European explorer prior to the colonial
period, an indicator variable that equals one if a railway line dissected the land inhabited by the
ethnicity during the nineteenth century, a measure of the fraction of land suitable for cultivation
and the fraction of land within ten kilometers of a water source, and the log normalized number
of slaves exported during the Atlantic and Indian Ocean slave trades. The village-level controls
include the same set of control variables but measured at the village level. Estimates significant
at the 0.05 (0.01) level are marked with ** (***).

There are two potential explanations for why results are surprisingly similar between

human- and machine-coded data. One potential reason is that the machine-coded data are of

high quality and very precise. However, we know from the comparisons in the previous section
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that this is not the case. There are, in fact, large differences in geographic precision between

human and machine-coded data, and these differences have clear drivers. A second potential

reason is that the systematic difference between human- and machine-coding do not result

in systematic measurement differences in key variables, so that the documented differences

do not matter in this particular case. Specifically, the explanatory variable (missions) might

be correlated highly between human and machine-coded measures, and the inclusion of

the urban indicator from the survey data might also account for some of the systematic

measurement error. Indeed, the human- and machine-coded number of missions near a

town/village are strongly correlated (r=0.73, p=0.000). Correlations are also high for the

village-level control variables water (r=0.69), agricultural suitability (r=0.80), contact with

pre-colonial European explorers (r=0.61), and connection to colonial railways (r=0.79); all

of which are highly statistically significant (p=0.000).

Further, the inclusion of urban indicator does not seem to affect the main result. To

examine the importance of this control variable, we replicate our Table 4 (which is Nunn’s

Table 1 models 2-3) by (1) omitting urban as a control variable, (2) running models on the

urban sub-sample, and (3) on rural sub-sample separately. Results are in Table 5 in the

Appendix and show that the results are robust across specifications and that the coefficient

estimates between human- and machine-coded data remain statistically indistinguishable.

The conversion mechanism is not significantly different between rural and urban areas, so

results do not differ with less precisely geocoded data. While human and machine geocod-

ing differ significantly and systematically across contextual factors, these differences do not

matter for the main result of this replication study.

Conclusion

Geo-coded data are increasingly popular but have some inherent risks with regard to reli-

ability, and thus inference. These risks are magnified in non-English speaking developing

countries that lack reliable maps, and when geocoding is done by machines instead of hu-
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mans. We provide a systematic comparison between the two coding approaches for survey

data from 20 sub-Saharan African countries.

We find that human coding outperforms machine coding in sub-Saharan Africa to date

in terms of both quality and precision. Automation was unable to code more than 13% of

locations at any lower level than the country. Furthermore, the AB coded more than 92%

of all observations at either the district or town/village level, whereas the OCG managed

to do so for only 72%. Automated geocoding is significantly less precise and reliable than

human coding, and these differences are driven by local contextual factors, which include

urbanization, infrastructure, service provision, as well as country context. In addition to

more densely populated areas, those locations with paved roads and post offices are much

more likely to be correctly geo-coded by a machine than locations without such character-

istics. Since locations that cannot be geocoded are at times dropped from the estimation,

this can potentially generate significant bias in result estimates. Our analyses suggest that

the degree to which these quality differences matter for changing results depends on whether

one of the key variables in the study is affected by geocoding.

These findings have important implications and add a cautionary note for research using

machine-coded geo-referenced data. First, geocoding ex post is difficult. This applies to

human coding as well but is more severe for machine coding. Even specially trained geocoders

at AidData/Afrobarometer could only code the location of about 58% of towns/villages in

sub-Saharan Africa. This is staggering and highlights the need to take great care when

working with geo-referenced data from the developing world, particularly when relying on

low levels of aggregation.

Second, it is better to geocode ex ante, during the process of local data collection. Spatial

information is important and should be collected while fielding the survey or other data col-

lection. Since many surveys in the developing world are collected on tablets and geocoding

technology is readily available and cheap, it is relatively easy for enumerators to download

GIS coordinates for each interview. In order to mitigate ethical issues about linking inter-
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viewee coordinates to interviewee responses – which might enable identification of individual

households and thus generate potential risks to respondents – survey administrators can add

random noise to geo-coordinates. This is done, for example, by the Demographic and Health

Surveys (DHS) Program, and protects individuals while indicating a geographic “zone” of

a few kilometers for researchers to use for merging with location-specific covariates. As the

coordinate displacement is random, it should not bias coefficient estimates.

Third, if researchers use or generate ex post machine coding of geographic information,

they need to be careful. Researchers should be skeptical of and investigate data quality,

especially when studying developing countries. They should be aware that (1) the precision

and the declared “quality” (level of coding) from automation is significantly worse than for

human-coded data, and that (2) these differences are driven by location-specific factors, such

as urbanization, infrastructure, and access to certain services. Differences in data quality can

be consequential when these location-specific factors play a significant role in the estimation.

At a minimum, researchers should not take data quality at face value, and document that

results are robust to potential biases of machine-geocoded data.

16



References
Barkan, Joel, Paul Densham and Gerard Rushton. 2006. “Space Matters: Designing Bet-

ter Electoral Systems for Emerging Democracies.” American Journal of Political Science
50:926–939.

BenYishay, A., R. Rotberg, J. Wells, Z. Lv, S. Goodman, L. Kovacevic and D. Runfola.
2017. “Geocoding Afrobarometer Rounds 1 - 6: Methodology & Data Quality.” Available
online at http://geo.aiddata.org.

Bunte, Jonas and Laura Thaut Vinson. 2015. “Local power-sharing institutions and inter-
religious violence in Nigeria.” Journal of Peace Research 53:49–65.

Deconick, Koen and Marijke Verpoorten. 2013. “Narrow and Scientific Replication of The
Slave Trade and the Origins of Mistrust in Africa.” Journal of Applied Econometrics
28:166–169.

Ichino, Nahomi and Noah L. Nathan. 2013. “Crossing the Line: Local Ethnic Geography
and Voting in Ghana.” American Political Science Review 107(02):344–361.

Murdock, George Peter. 1959. Africa: Its peoples and their culture history. New York:
McGraw-Hill.

Nemeth, Stephen, Jacob Mauslein and Craig Stapley. 2014. “The Primacy of the Local: Iden-
tifying Terrorist Hot Spots Using Geographic Information Systems.” Journal of Politics
101:3221–3252.

Nunn, Nathan. 2010. “Religious Conversion in Colonial Africa.” American Economic Review
100:147–152.

Opencage Data Ltd. 2018. “OpenCage Geocoder.” https://geocoder.opencagedata.com/.

Standow, Daniel, Michael Findley, Daniel Nielson and Josh Powell. 2011. “The UCDP-
AidData Codebook on Geo-referencing Foreign Aid, Version 1.1.” Uppsala Conflict Data
Program, Uppsala, Sweden: Uppsala University.

Warren, Camber. 2015. “Explosive connections? Mass media, social media, and the geogra-
phy of collective violence in African states.” Journal of Peace Research 52:297–311.

Zeigermann, Lars. 2018. “Opencagegeo: Stata Module for Geocoding.” http://fmwww.bc.

edu/repec/bocode/o/opencagegeo.pdf.

17

http://geo.aiddata.org
https://geocoder.opencagedata.com/
http://fmwww.bc.edu/repec/bocode/o/opencagegeo.pdf
http://fmwww.bc.edu/repec/bocode/o/opencagegeo.pdf


Appendix

A Variables Used in Table 2
We use most of the location-specific enumerator coded variables from the Afrobarometer

dataset round 4 to identify systematic determinants of machine geocoding precision. The
included variables are detailed below (AB variable name in brackets). We code variables as
missing if indeterminable or missing data.

• Urban: Dichotomous variable that is 1 if an urban primary sampling unit and 0
otherwise (URBRUR)

• Electric Grid: Is there an electric grid that most houses can access? 1=Yes; 0=No
(EA SVC A)

• Pipped Water: Is there a piped water system that most houses can access? 1=Yes;
0=No (EA SVC B)

• Sewage Pipe Access: Is there a sewage system that most houses could access?
1=Yes; 0=No (EA SVC C)

• Paved Road: Think of your journey here: Was the road at the start point of
the primary sampling unit /enumeration area paved/tarred/concrete? 1=Yes; 0=No
(EA Road)

• Infrastructure: Additive index of the four dichotomous variables above (i.e., electric
grid, pipped water, sewage pipe access and paved road) ranging from 0 to 4.

• Post Office: Is there a post office present or within easy walking distance? 1=Yes;
0=No (EA FAC A)

• School: Is there a school present or within easy walking distance? 1=Yes; 0=No
(EA FAC B)

• Police Station: Is there a police station present or within easy walking distance?
1=Yes; 0=No (EA FAC C)

• Health Clinic: Is there a health clinic present or within easy walking distance?
1=Yes; 0=No (EA FAC D)

• Market: Is there a market present or within easy walking distance? 1=Yes; 0=No
(EA FAC E)

• Services: Additive index of the four dichotomous variables above (i.e., post office,
school, police station, health clinic, market) ranging from 0 to 5.

The only locations-specific variables provided that were not included are cell phone service
(too many missing values) and the two security related variables, asking enumerators whether
police or military was present.
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B Scientific Replication of Nunn (2010)

We follow Nunn (2010) in constructing the relevant variables. Below we detail the construc-
tion of each variable and note when it differs from the original study. Data for the dependent
and individual-level control variables come from the Afrobarometer dataset round 4 and are
coded missing in the case of don’t know/refused (AB variable name in brackets). We link
ethnic-level variables to the survey data by using information on each respondent’s ethnic
group (Q79) and a previous mapping between this AB round and the Murdock ethnic groups
by Deconinick and Verpoorten (2013).3

Outcome Variable:

• Protestant/Catholic Indicator: Indicator variable that is 1 if a respondent self-
identifies as Christian (Catholic or Protestant: mainstream, Evangelical, Pentecoastal),
and 0 otherwise (Q79)

Explanatory Variables:

• Mission Stations among Ethnic Group: Number of Protestant and Catholic mis-
sions within the pre-colonial homeland of an ethnic group in Murdock (1959)

• Mission Stations in Village: Number of Protestant and Catholic missions within
25km of a town/village

Individual-level Control Variables:

• Male: Indicator variable that is 1 if a respondent is male, and 0 otherwise (Q101)

• Age: Respondent’s age in years (Q1)

• Age squared: Respondent’s age in years squared (Q1)

• Employment: Respondent’s 6-category employment status (Q94); this replaces the
occupation measure from the original study which was included in AB3 but not AB4

• Living condition: Respondent’s view of their present living conditions (Q4B): (1)
very bad, (2) fairly bad, (3) neither good nor bad, (4) fairly good, or (5) very good.

• Urban: Indicator variable that is 1 if the town/village is urban, and 0 otherwise
(URBRUR)

Ethnic-level Control Variables:

• Access to drinking water: Fraction of ethnic homeland based on Murdock’s (1959)
mapping of African pre-colonial ethnic groups that is within 10km of a fresh water lake
or major river

3Matching ethnic groups is considerably more involved in AB4 than AB3 because AB4 includes more

than double the ethnic groups and only a portion of them overlap with Nunn’s AB3 data. This is because

AB4 includes additional countries and much more fine-grained identities of ethnic groups. See the readme

file of Deconinick and Verpoorten (2013) for one account of this.
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• Abundance of fertile soil: Fraction of ethnic homeland based on Murdock’s (1959)
mapping of African pre-colonial ethnic groups that is suitable for growing rain-fed
crops with intermediate input according to the UN Food and Agriculture Organization
(FAO)

• Explorer route: Indicator variable that is 1 if an ethnic group was contacted by
pre-colonial European explorers

• Colonial railway lines: Indicator variable that is 1 if an ethnic group was connected
to the colonial railway network

• Slave trade: Logged number of slaves exported from an ethnic group (normalized
over their historic area) during the Atlantic and Indian ocean slave trade

Village-level Control Variables:

• Access to drinking water: Fraction of the 25km radius around a town/village that
is within 10km of a fresh water lake or major river

• Abundance of fertile soil: Fraction of the 25km radius around a town/village that is
suitable for growing rain-fed crops with intermediate input according to the UN Food
and Agriculture Organization (FAO)

• Explorer route: Indicator variable that is 1 if the 25km radius around a town/village
was contacted by pre-colonial European explorers

• Colonial railway lines: Indicator variable that is 1 if the 25km radius around a
town/village was connected to the colonial railway network

• Slave trade: Logged number of slaves exported from an ethnic group during the
Atlantic and Indian ocean slave trade within which the town/village is located
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C Additional Results

Table 5: Replication using Human and Machine Geocoding and Urban Measures

No Urban Control Urban Subsample Rural Subsample
(1) (2) (3) (4) (5) (6)

Panel A: Table 1 Model 2 in Nunn (2010)

Missions stations in village AB 0.157*** 0.099** 0.215***
(0.030) (0.042) (0.045)

Missions stations in village OCG 0.157*** 0.126*** 0.180***
(0.033) (0.045) (0.045)

Observations 22538 22538 7862 7862 14676 14676
Clusters 3750 3750 1146 1146 2633 2633
Pseudo R2 0.315 0.313 0.303 0.302 0.329 0.326

Panel A: Table 1 Model 3 in Nunn (2010)

Missions stations among ethnic group 0.024*** 0.025*** 0.025** 0.024** 0.021*** 0.025***
(0.006) (0.006) (0.010) (0.010) (0.008) (0.008)

Missions stations in village AB 0.097*** 0.047 0.150***
(0.029) (0.040) (0.044)

Missions stations in village OCG 0.083*** 0.060 0.098**
(0.030) (0.041) (0.043)

Observations 22538 22538 7862 7862 14676 14676
Clusters 7193 7193 2914 2914 4310 4310
Pseudo R-Squared 0.328 0.328 0.326 0.326 0.340 0.339

Notes: The table reports logit estimates where the unit of observation is an individual. Coefficients are reported with
(town/ethnicity-town) clustered standard errors in brackets. All regressions include country fixed effects. Individual-
level controls include age, age squared, a gender indicator, five living condition fixed effects, and six employment fixed
effects. Panel B includes ethnicity-level controls, which are an indicator variable that equals one if the ethnicity was
contacted by a European explorer prior to the colonial period, an indicator variable that equals one if a railway line
dissected the land inhabited by the ethnicity during the nineteenth century, a measure of the fraction of land suitable
for cultivation and the fraction of land within ten kilometers of a water source, and the log normalized number of slaves
exported during the Atlantic and Indian Ocean slave trades. Panels A and B include village-level controls, which are the
same set of control variables but measured at the village level. Estimates significant at the 0.05 (0.01) level are marked
with ** (***).
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