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Abstract

Researchers often study outcome variables that correspond to the time until an event oc-
curred (or “failed”), otherwise known as “survival data.” For political science survival data,
one’s ability to record an event as having failed at a given point in time is frequently prone
to measurement error. Within studies of civil war duration, for example, event failures are
imperfectly identified according to a crude cutoff criteria, ensuring that some civil wars that
are coded as terminated (i.e., as non-right censored) persist beyond their recorded failure.
Inaccurately recorded event failures of this sort are in actuality right censored events: the re-
searcher should only conclude that the observation lasted up until the recorded failure time.
Concluding instead that the observation terminated at that point in time is problematic as
there is a non-zero probability that the observation persisted past that point. Moreover, if
heterogeneity exists among these imperfect codings of event failures, then survival models
will yield biased estimates of parameter effects. To address this problem we develop a new
split population survival estimator that explicitly models the misclassification probability of
failure (vs. right censored) events. After deriving this model, and an associated R package,
we use Bayesian estimation via a slice sampling algorithm to evaluate its performance within
both (i) simulated data and (ii) several published political science applications. We find that
our proposed “misclassified failure” survival model allows researchers to accurately account
for the process of “inflation” in failure-events that is described above.
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Introduction

A remarkable amount of innovation has occurred within the study of survival (i.e., du-
ration) models and related processes over the past several decades. One arena of polit-
ical methodology insight in this regard relates to survival model extensions that seek to
disentangle mixtures of multiple survival data processes. Box-Steffensmeier, De Boef and
Joyce (2007), for example, introduce a survival model that separately accounts for within-
observation heterogeneity arising from both event dependence and heterogeneity in repeated
event processes; whereas Metzger and Jones (2016) introduce political scientists to a class of
multi-state survival estimators that allow researchers to model distinct within-observation
survival phases.! Others have extended the applicability of a class of split-population sur-
vival models known as cure models—which account for a type of “inflation” in one’s non-
failure survival cases that arises from the presence of observations that are effectively cured
from ever experiencing an event failure of interest—for the study of Political Science (Box-
Steffensmeier and Zorn, 1999; Svolik, 2008; Beger, Dorff and Ward, 2014, 2016); and with
respect to the availability of corresponding open source software (Beger et al., 2017).

In this paper we contend that a reverse split-population survival process can also com-
monly arise within social science survival data. That is, survival data can often over-report
events as having failed, such that some observations’ true censored values are misclassified
as failed. This leads to an inflation of failure events, whereas the cure model mentioned
above instead accounts for inflation only within non-failure cases. Inaccurately recorded
event failures of the former variety are in actuality right censored events: the researcher
should only conclude that the observation lasted up until the recorded failure time. Con-
cluding instead that the observation terminated at that point in time is problematic as there
is a non-zero probability that the observation persisted past that point. There are several

social science scenarios where (a subset of) recorded failure events may actually persist be-

'Methodological research into non-proportional hazards is also illustrative in these regards (e.g.,
Keele, 2010; Licht, 2011; Jin and Boehmke, 2017; Ruhe, 2018).



yond their recorded failure time in this manner, leading to misclassification (i.e., inflation)
in event failures. We discuss several such cases immediately below.

In many Political Science applications, one’s events of interest often do not have clearly
observable end-points (i.e., “failures”). When this is the case, the researcher must estab-
lish a threshold criteria to determine whether (and when) a duration observation (or some
subset of observations) failed. Often the strategy is to choose a failure-threshold that, if
anything, underestimates the length of one’s actual event. The implicit reasoning for this is
that it is better to be conservative and ensure that coded events end before they truly do
than it is to code events as incorrectly persisting beyond their true failures. As an example,
consider research on civil war duration. Here, researchers typically analyze the durations of
rebel-government conflicts, but record civil war end dates (“failures”) for specific conflicts
based upon 24-month spells with fewer than 25 battle-deaths per year (e.g., Balch-Lindsay
and Enterline 2000; Buhaug, Gates and Lujala 2009; Thyne 2012). This threshold is overly
conservative, especially for lower-intensity civil wars in remote or poor information environ-
ments that persist indefinitely with little actual fighting.? We illustrate the consequences
of these coding errors in the “Conservative Failure Threshold” subfigure below. Here, some
cases persist beyond the window of time under analysis, and hence are accurately recorded
as censored, whereas one remaining case is accurately recorded as failed. However, an ad-
ditional subset of recorded failures in this subfigure persists beyond their recorded failure
time, due to researchers’ overly conservative thresholds for determining failures. Treating
the latter cases as failures within survival analyses can lead to bias, especially if covariates
of interest happen to be correlated with an observation’s likelihood of misclassification of
failure—as demonstrated in the sections further below.

Misclassified failure events can also arise in survival data due to a variety of other coding

or reporting processes. For example, within long-range historical analyses, studies of the

2A similar case is the survival of terrorist groups, where scholars typically code and analyze
group survival as the time between a terrorist group’s first and last known attacks (Young and
Dugan, 2014).



Figure 1: Misclassified Failure Illustrations
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durations of ancient civilizations or political processes therein (e.g., Cioffi-Revilla and Lai,
1995; Cioffi-Revilla and Landman, 1999) typically do not have data on the precise time-point
of a given failure event due to the sands of time. Instead, researchers must make do with the
best available proxy for such a failure event, often using the last known historical record (e.g.,
artifact or carbon dating) of an ancient civilization or social activity. In these cases, one’s
resultant survival data corresponds to the “Last Observance Treated as Failure” subfigure
above: each observation’s recorded failure time is an underestimate of that observation’s true
life-span, in that a researcher knows with certainty that that observation lasted at least up
until that point, but there is a strong likelihood that it persisted for some amount of time past
that recorded failure. To the extent that these underestimates of duration are non-random,
and are correlated in their severity with commonly studied covariates (e.g., environmental
or geographic conditions), bias will again arise in survival estimates of these phenomenon.
Finally, political actors often self-report their duration of (non)engagement in a given activity
(e.g., political participation, compliance with a given law, or political donations), and these
reports are often leveraged within survival analyses (e.g., Cress, McPherson and Rotolo, 1997;
Box-Steffensmeier, Radcliffe and Bartels, 2005; Linos, 2007). For a subset of these cases,

some actors may have strategic reasons to under-report their duration of (non)engagement.



Here again then, the recorded failures in one’s survival data can exhibit misclassification,
potentially in the manners depicted in either subfigure in Figure 1.

To address the methodological challenges associated with misclassified failures, we de-
velop a a parametric misclassified failure split population survival model that explicitly ac-
counts for the potential that an unknown subset of failure events actually “lived on” beyond
a researcher’s recorded failure times for those observations. In a similar fashion to the cure
survival model, our proposed model does so by estimating a system of two equations. The
first can be characterized as a “splitting” equation that allows one to estimate the probability
of a case being recorded as a misclassified failure, with or without covariates. The second
equation then represents that of a standard parametric survival model, whose relevant fail-
ure and survival probabilities (and corresponding coefficient estimates) are now estimated
conditional on a case being a (non)misclassified failure instance. After deriving this model
within both a non-time varying and time varying covariate context, we develop a correspond-
ing R package to facilitate its estimation using a Bayesian inference with a slice sampling
algorithm (i.e., a Markov Chain Monte Carlo method). We then illustrate the advantages
of our Bayesian model within a series of Monte Carlo simulations and two separate political
science applications. Notably, these illustrations reveal that our proposed model not only
is capable of providing improved survival estimates—and theoretical insights—concerning
the determinants of survival processes when misclassified failures are present, but also offers
researchers with a means of theoretically identifying (and testing for) the factors that may

govern a particular misclassified failure process.

1 Survival Model with Misclassified Failure

1.1 Parametric Misclassified Failure Model

We formally describe below our new split population survival model—labeled as the

“Misclassified Failure” (MF) model—that explicitly models the misclassification probability



of failure versus right censored events. We first define our MF model’s general parametric
log-likelihood function, which can be used in conjunction with commonly used parametric
survival models (e.g., exponential, Weibull, or log-normal). We then use this general MF
framework to develop our main model of interest — the Bayesian MF Weibull model with
time-varying covariates — that is estimated by Markov Chain Monte Carlo (MCMC) methods.

We start by defining a general parametric split population survival model for continuous
time duration data, where subjects ¢ = {1,2,...N} each eventually experience an event of
interest. However, not all subjects need experience the event during a particular sample-
period, as some may survive until the end of the sampling window, in which case they
are “censored” in their final period of observation (51 = 0 if censored, and 1 otherwise).
The duration of interest ¢ is thus assumed to have a probability density function (PDF) of
f(t) = Pr(T; = t), where T is an observation’s duration of time until experiencing the event
or censoring. The cumulative distribution function (CDF) for the probability of the event
on or before t is accordingly Pr(7T; <t) = F(t) = fot f(t)dt, where the probability of survival
is Pr(T; > t) = S(t) = 1 — F(t). With this PDF and CDF, the hazard of an event at ¢
given that the event has not occurred prior to that point is hA(t) = % We next use these
probability statements to define the (log) likelihood for a general parametric survival model.

To this end, note that uncensored observations (@ = 1) provide information on both
the hazard of an event, and the survival of individuals prior to that event, whereas censored
observations (6’1 = 0) only provide information on an observation having survived at least
until time 7;. Combining each set of observations’ respective contributions to the density

and survival functions, the likelihood and the log-likelihood function(s) of the standard

parametric survival model are respectively,

L= [ s and 1)
InL = Z{@ In[f(t:|X:, B)] + (1 — C) In[S(:|X;, B)]}, (2)



where X, are pl-dimensional covariates and 3 is the corresponding parameter vector in RP!.
We build on this standard survival model to account for asymmetric misclassification arising
within one’s censored and failure observations to develop our MF model. To do so, we focus
on situations where censored cases are misclassified as failed observations, in which case one’s
observed censoring indicator C; accurately records all censored cases (V(C; = 0) : (C; = 0))
but mis-records some subset of non-censored failure outcomes as censored (3 (C; = 1) : (C; =
0)). Drawing on Box-Steffensmeier and Zorn’s (1999) notation in their review of the cure
survival model, we define a corresponding probability of misclassification as a; = Pr(@ =
1|C; = 0). This implies that the unconditional density is defined by the combination of

an observation’s misclassification probability and its probability of experiencing an actual

failure conditional on not being misclassified:
Pr(oy =1) +Pr(o; =0) Pr(t; <T;) = a; + (1 — o) f(L:), (3)
with the corresponding unconditional survival function of
Pr(a; = 0)Pr(t; > T;) = (1 — o) S(t;), (4)

where «; can be estimated via a binary response function such as probit, complementary

log-log, or logit and is thus defined for the logit case as:

o exp(Z;y)
" 14 exp(Ziy)’ (5)

where Z; are p2-dimensional covariates and -~ is the corresponding parameter vector in RP2.
Combining each set of observation’s respective contributions to the density and survival
functions, and given the expression for «; in (5), the log-likelihood function of the gen-
eral paramteric split population model with misclassified failure cases (without time-varying

covariates) is

InL = Z{@ Infa; + (1 — ;) f(t:]X5, B)] + (1 — C) In[(1 — ;) S(t:| X, B)]}. (6)

We next extend our MF model developed above and the model’s log-likelihood in (6) to

account for time varying covariates. To do so, we re-define our survival data with unique



“entry time” duration t0 and “exit time” duration ¢ for each period at which an observation
is observed. As such, t0;; denotes observation i’s elapsed time since inception until the
beginning of time period j and ¢;; denotes the elapsed time since that observation’s inception
until the end of period j. An observation’s status at time ¢;; is then coded as censored
(Cij = 0) or as having failed or “ended” (Cj; = 1) at time ¢;;. For ¢, the PDF (f(t)), CDF
(F(t)), probability of survival (S(t)), and hazard of an event (h(t)) remain as defined above.

However, we must now also define the probability of survival up until period 7, as
S(t0) = 1 — F(t0), (7)

where F(t0) = Oto f(t0). With S(t0) defined, we extend the general parametric survival
model’s log-likelihood defined in equation (2) to accommodate time varying covariates X;;
and associated parameter vectors of 3 by conditioning an observation’s hazard and survival
probability for time ¢ upon its probability of survival until ¢0:

InL = Z {CUI {%} +(1—=C;)n {%} } . (8)

As described in the Supplemental Appendix, we use the steps described in equations (3) to
(6) and extend the log-likelihood function in (8) to define the log-likelihood function of the
parametric MF model with time varying covariates as:

N
_ A 3 o S51X5,8) A (1 — a S(ti;1X45, B)
e ; {Cwln {% +{ a”)S(tOMXij,ﬁ)} =) {(1 aU)S(tOiﬂXijaﬁ)} } ©)

M can be accordingly estimated via a logit CDF, or alternatively via
1+eXp(Z1]'Y)

where o;; =
a probit or a complimentary log-log CDF. Thus, as shown in the log-likelihood in (9), the
MF model with time-varying covariates accounts for the probability of misclassification via
a;; since the observed event failures may include latent misclassified failure cases and the
influence of covariates on the hazard of the event of interest. Note that the general properties

of the standard cure model also — as presented in Box-Steffensmeier and Zorn (1999, 5) and as

shown in the Supplemental Appendix — holds for the MF model, including (i) the reduction



of the latter to a standard parametric model when «;; = 0 and (ii) parameter identification
even in the case where identical covariates are included in Z and X. But in contrast to the
standard cure model (which accounts for an excess number of subjects who are immune to
experiencing an event of interest), the MF model with time-varying covariates is a model
for instances where some subjects are observed as having failed or experienced the event of
interest, even though they in actuality “live on” past their observed-failure point. Hence,
the MF model is useful in situations where observed event failures in the survival data is
contaminated with latent misclassified failure cases.

The log-likelihood statement of the time-varying MF model in (9) can be used in con-
junction with commonly used parametric survival models such as the exponential, Weibull,
log-logistic, or log-normal). Since Political Science survival model applications that use du-
ration data which are prone to the contamination of latent misclassified failure cases (e.g.,
civil conflict duration data) use the standard Weibull model, we develop and define the
log-likelihood function of our MF Weibull model with time-varying covariates in the next
section. In the Supplemental Appendix, we also develop the MF exponential model and

assess this model via Monte Carlo simulations.

1.2 Misclassified Failure Wezbull Model

Suppose that the survival time ¢ has a Weibull distribution of W (¢;;|p, Xi;,3). The
corresponding density function and survival function in this case are as follows:
f(tilp, Xi5, B) = exp(Xy8)p (exp(Xy;B)ti;) ™ exp((—exp(Xi;B)ti;)”)

S(tijlp, Xij, B) = exp(—(exp(Xi; B)ti;)").

(10)

In the Supplemental Appendix, we follow the steps in equations (3) to (6) and use the para-
metric time-varying MF model’s log-likelihood function in (9) to develop the log-likelihood

function of the MF Weibull model with time-varying covariates, which is given by:



InL(p, B,)

_y A 1n e o (1 o EPXiB)p (exp(XiyB)ty)  exp((—exp(XyB)t;)")

- ; {Owl [ it aw) exp(—(exp(X;8)t0)*) (11)
exp(—(exp(Xi;8)ti;)°) ]

exp(—(exp(Xi;3)t0:5)7) | |

+ (1 - @j)ln {(1 - Oéz'j)

The model’s log-likelihood in (11) thus accounts for the probability of misclassification and
covariates that influence the survival of the event of interest given by a Weibull distribution.

While the MF Weibull model with time-varying covariates can be estimated by maximum
likelihood using, for example, BFGS,® we estimate this model via the MCMC algorithm
employed for Bayesian inference. We adopt the Bayesian estimation framework due to its
flexibility and the fact that it makes use of all available information and produces clear
and direct inferences. We thus label our model as the Bayesian MF Weibull model given
the use of MCMC estimation. To conduct Bayesian inference, we need to assign a prior
for each of the MF Weibull model’s three parameters — p, 3, and « — and then define the
conditional posterior distribution of these parameters. Following standard practice, we assign
the multivariate Normal prior to 8 = {f1, ..., By, } and v = {71, ...,7p,}, and the Gamma

prior for p with shape and scale parameters a, and b,:
p ~ Gamma(a,b,), B~ MVN,(0,%X5), ~v~MVN,(0, X)) (12)
Sp ~IW(Ssvs) Ty~ IW(S, ),
where a,, b,, Sg, v3, Sy, 1, are the hyperparameters. Note that we use hierarchical Bayesian
modeling to estimate X3 and X, using the Inverse-Wishart (IW) distribution. Given these

prior specifications and the hyperparameters, the conditional posterior distributions for p,

(B, and ~ parameters in the Bayesian MF Weibull model (with time-varying covariates) are

3The Broyden, Fletcher, Goldfarb, Shannon (BFGS) method in the R optim function. In our
Monte Carlo analysis, we briefly assess the properties of the MF Weibull model estimated by BFGS.

9



P(p|C7X7 Z7t7t07 ﬂ? 7) X P<C7X7 Z’t7t07137 PY? p) >< P(p|ap7 bp)
P(IB|C7X" Z7t7t07 77 p) X P(C7X‘7 Z7t7t07 137 77 p) >< P(ﬁlgﬁ)

P(’Y|C’X" Z7t’t07 6’ p) X P(C’X‘7 Z7t’t07 6’ 77 p) >< P(7|27>7

where P(C, X, Z,t,t0,3,, p) is the likelihood that can be obtained using the log-likelihood

in equation (11), and P(pla,,b,), P(B|Xs), and P(v|X,) are the priors in equation (12).

We next describe the sampling scheme used for our Bayesian inference. Because closed

forms for the posterior distributions of p, 3, and ~ are not available, we use MCMC methods

with the following slice sampling (Neal, 2003) update scheme,

Step 0. Choose initial value of 3,~, and p and set i = 0.
Step 1. Update X3 ~ P(X3|8) and X, ~ P(X,|v) from conjugate posteriors. The

closed form of the full conditional distributions for X3 and X, are derived in the
Supplemental Appendix.

Step 2. Update 3 ~ P(B|C,X,Z,t,t0,v,p,X3), v ~ P(v|C,X,Z,t,t0,8,p,2,)
and p ~ P(p|C,X,Z,t,t0,3,7,a,,b,) using slice sampling. We use the univariate
slice sampler with stepout and shrinkage (Neal, 2003). Detailed steps to perform slice

sampling for 3, 7, and p are described in the Supplemental Appendix.
Step 3. Repeat Step 1 and Step 2 until the chain converges.

Step 4. After N iterations, summarize the parameter estimates using posterior sam-

ples (via, e.g., credible intervals or posterior means).

Monte Carlos

We conduct 11 Monte Carlo (MC) experiments to assess the relative performance of

the survival models discussed above. Our primary MC experiments simulate either (i) a

non-MF Weibull distributed outcome variable (Experiment 1) or (ii) a MF Weibull dis-

tributed outcome variable (Experiment 2) and in each case compare the performance of

a Bayesian Weibull model to that of a Bayesian MF Weibull model, under circumstances

10



where N = 1,000, N = 1,500, or N = 2,000. Experiments 3-4 instead assess the perfor-
mance of maximum likelihood estimated (via BFGS) Weibull and MF Weibull models for the
same non-MF Weibull (Experiment 3) and MF Weibull (Experiment 4) simulated outcome
variables; again for N = 1,000, N = 1,500, and N = 2,000. Experiments 5-8 simulate
an exponentially distributed! outcome variable (Experiments 5 and 7), or a MF exponen-
tial outcome variable (Experiments 6 and 8), and compare the relative performance of (i)
Bayesian Weibull, MF exponential, and MF Weibull models (Experiments 5-6) or (ii) BFGS
exponential, Weibull, MF exponential and MF Weibull models (Experiments 7-8). As above,
Experiments 5-8 evaluate all models considered under conditions of N = 1,000, N = 1, 500,
and N = 2,000. Finally, Experiments 9-11 return to our Bayesian Weibull and Bayesian MF
Weibull models and compare these two estimators under instances of increasingly larger MF
rates; again for our three N’s of interest.

For all experiments, we set sims = 500 and assign our survival stage covariates (x) as
x = (1,x1)" where x; is drawn from Uni form[—2.5,12]. The MF outcome experiments (i.e.,
Experiments 2, 4, 6, 8, and 9-11) then add a moderate level of misclassified failure cases
(v = 5%) within the resultant survival outcome variable (Experiments 2, 4, 6, and 8), or
add MF rates of 8%, 12%, and 15% (Experiments 9, 10, and 11, respectively). To generate
our MF rates in Experiments 2, 4, 6, 8, and 9-11, we define a set of misclassification stage
covariates z = (1,21,22) ,where z; = In(Uniform|0,100]) and zy = x;. Parameter values
are assigned as (1, 52)" = (1,3.5)" for our survival-stage predictors (Experiments 1-11). Our
misclassification stage parameters are defined as (v1,72,73) = (—2,3,3)" (Experiments 2,
4, 6, and 8), or as (v1,72,73) = (2,1,4) (Experiment 9), (71,72,73) = (—3,2,5)" (Exper-
iment 10), or (vy1,72,73) = (4.5,—1,5)" (Experiment 11). The (MF) Weibull-distributed
outcome variables (Experiments 1-4; 9-11) use p = 2. For each parameter estimate, we re-
tain and evaluate the mean (MCMC-simulated) estimate and (MCMC-simulated) standard

error (MCSE), as well as the parameter estimate’s root mean square error (RMSE).

4A Weibull distributed outcome variable with p = 1.
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Experiment 1 evaluates the relative performance of (i) a Bayesian Weibull model and (ii)
a Bayesian MF Weibull model when the true data generating process (d.g.p.) corresponds
to a Weibull survival process with no misclassified failures. We report these results in the
top portion of Table 1, and also plot the full distributions of each model-specific parameter
estimate within Figure A.1 of the Supplemental Appendix. In cases where a researcher en-
counters a non-MF Weibull-distributed outcome variable, we find in Table 1 and Figure A.1
that the Bayesian MF Weibull estimator exhibits comparable performance to a standard
Bayesian Weibull model. For example, across all § parameters of interest, the Bayesian
Weibull and Bayesian MF Weibull models recover averaged parameter estimates that are
virtually identical. This is corroborated by the RMSEs reported in Table 1, which indicate
that our Bayesian Weibull and Bayesian MF Weibull models recover B’s with compara-
bly low levels of bias. Indeed, there are several instances where the Bayesian MF Weibull
model exhibits slightly less bias than the Bayesian Weibull (e.g., for 5y when N = 1,000 or
N =1,500). However, although both models consistently exhibit low MCSEs, the Bayesian

Weibull model’s MCSEs are consistently smaller than those of the Bayesian MF Weibull.

Table 1: Markov Chain Monte Carlo (MCMC) S-Estimates for Experiments 1 and 2

Experiment 1: Non-MF Weibull D.G.P.

#0bs. Model Bo  MCSE(3,) RMSE(3,)| (1 MCSE(B,) RMSE(B,)
1000 Bayes Weibull | 0.999  9.95E-05 0.027 [ 3.500 1.37E-05 0.004

’ Bayes MF Weibull | 1.002  7.01E-04 0.025 | 3.500 9.07E-05 0.004
1500 Bayes Weibull | 1.002  6.69E-05 0.023 | 3500 9.31E-06 0.003

’ Bayes MF Weibull | 1.001  4.47E-04 0.022 | 3.500 5.80E-05 0.003
5 000 Bayes Weibull | 1.002  5.11E-05 0.019 [3500 7.10E-06 0.003

’ Bayes MF Weibull | 0.999  3.25BE-04 0.020 | 3.500 4.23E-05 0.003

Experiment 2: MF Weibull D.G.P.

#Obs. Model Bo  MCSE(B,) RMSE(,) | (i MCSE(S) RMSE(S)
1000 Bayes Weibull | 1.226  1.66E-04 0.226 | 3.478  2.42E-05 0.022

: Bayes MF Weibull | 1.005  2.30E-04 0.026 | 3.499  2.57E-05 0.004
1500 Bayes Weibull | 1.237  1.14E-04 0.237 [ 3476 1.68E-05 0.024

’ Bayes MF Weibull | 1.002  1.20E-04 0.022 | 3.500 1.41E-05 0.003
5 000 Bayes Weibull | 1.248  8.87E-05 0.248 [ 3475 1.29E-05 0.025

’ Bayes MF Weibull | 1.002  3.17E-04 0.019 | 3.500 3.15E-05 0.003

Note: True parameter values are Sy = 1 and 51 = 3.5.

In sum, while the Bayesian Weibull model outperforms the Bayesian MF Weibull model

12



Table 2: Markov Chain Monte Carlo (MCMC) ~-Estimates for Experiment 2

Experiment 2: MF Weibull D.G.P.

#0bs. Model 4%  MCSE(%) RMSE(,)| %  MCSE(.) RMSE() | 4  MCSE(}%:) RMSE(3,)
Bayes MF Weibull | -1.584 0.147 0.838 1.959 0.108 0.344 3.285 0.141 0.532
Bayes MF Weibull | -1.697 0.113 0.797 1.935 0.069 0.305 3.290 0.083 0.443
Bayes MF Weibull | -1.628 0.341 0.705 2.032 0.249 0.208 3.272 0.327 0.378
Note: True parameter values are vg = —2, v; = 2, and 2 = 3.

in terms of efficiency, Experiment 1 suggests that (mis)applying the Bayesian MF Weibull to
non-MF Weibull distributed survival data does not lead to substantial biases in one’s result-
ing parameter estimates. These conclusions are reinforced by Figure A.1, which demonstrates
that the MF Bayesian Weibull model exhibits comparable parameter-estimate distributions
(across 500 sims) to those of the standard Bayesian Weibull model, for all N’s considered.

Experiment 2 (re)evaluates the performance of the Bayesian Weibull and Bayesian MF
Weibull models when the true d.g.p. is MF Weibull. We report these MC results in the
lower half of Table 1 (8 parameters) and in Table 2 (v parameters). We also plot the full
distributions of each 3 parameter in the Supplemental Appendix. These tables and figures
reveal very favorable results for the Bayesian MF Weibull model, and less than favorable
results for the Bayesian Weibull model. Looking first at the [ estimates reported in Table
1, the Bayesian MF Weibull B ’s are highly comparable to our true parameter values, and
improve in this respect as the number of observations is increased from 1,000 to 2,000. By
contrast, the standard Bayesian Weibull model’s mean B ’s substantially overestimate [, and
typically underestimate (1 no matter the N considered. These conclusions are reinforced
by the RMSE and MCSE values reported in Table 1, which indicate that the Bayesian MF
Weibull model exhibits RMSE values that are 2-10 times smaller than the standard Bayesian
Weibull models” RMSEs, and exhibits MCSEs that are generally comparable in size to those
of the Bayesian Weibull.

The full parameter distributions presented in Figure A.2 reinforce the above observations
in demonstrating that—relative to the Bayesian MF Weibull model— the Bayesian Weibull’s

B 's do a substantially worse job in capturing the true parameter values, across all sets of
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500 simulations examined in Experiment 2. Turning next to Experiment 2’s MF Weibull ~
estimates (Table 2), we find in our averaged 4 values that our Bayesian MF Weibull model
generally recovers each true v value quite well. That being said, the RMSE and MCSE
values reported in Table 2 nevertheless suggest that the Bayesian MF Weibull model’s #4’s
exhibit higher bias, and lower efficiency, than was the case for the Bayesian MF Weibull’s
B ’s in Experiment 2. This disparity declines as one increases N from 1,000 to 2,000.

We next turn to MC Experiments 3-4, which assess the performance of our maximum
likelihood estimated (BFGS) Weibull and MF Weibull models in circumstances where one’s
outcome variable follows a Weibull survival process (Experiment 3) or a MF Weibull survival
process (Experiment 4). We report these full MC results in the Supplemental Appendix,
and summarize the key insights here. First and foremost, Experiments 3-4 yield similar
conclusions to those obtained in Experiments 1-2. When one’s d.g.p. is Weibull (Experiment
3), the BFGS Weibull and BFGS MF Weibull models perform comparably, with no noticeable
differences in bias or efficiency across these two estimators. However, when the d.g.p. is
instead MF Weibull (Experiment 4), the BFGS MF Weibull exhibits consistently lower bias
and higher efficiency than the BFGS Weibull model, with the BFGS MF Weibull’'s RMSEs
generally being 5-10 times smaller than those of the BFGS Weibull. Hence, we can again
conclude that the risks to inference of (mis)applying the MF Weibull in the absence of
misclassified failures are fairly low, whereas the inferential risks of (mis)applying a standard
Weibull to MF survival data are substantial.

We can also compare the Bayesian MF Weibull results obtained in Experiment 2 to
those of the BFGS MF Weibull in Experiment 4. Here we observe that the B ’s from the each
MF model are comparable across Experiments 2 and 4, as are the corresponding RMSEs.
However, when one’s outcome variable is MF Weibull, we also observe that the Bayesian
MF Weibull model’s 4’s generally exhibit lower bias, and higher efficiency, than do those
of the BFGS MF Weibull. Thus, we can conclude from Experiments 1-4 that the Bayesian

MF Weibull is superior to the BFGS MF Weibull model in accuracy and efficiency when the
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d.g.p. is MF Weibull. This suggests that researchers should generally favor the Bayesian MF
Weibull model over the BEGS MF Weibull model for applied research.

Experiments 5-8 simulate either an exponentially distributed outcome variable (Exper-
iments 5 and 7) or a MF exponential outcome variable (Experiments 6 and 8). These
experiments are fully presented in the Supplemental Appendix, and reevaluate our Bayesian
or BFGS (MF) Weibull models alongside Bayesian or BFGS (MF') exponential survival mod-
els. Across MC Experiments 5-8, we again find that the (Bayesian and BFGS) MF survival
models perform comparably to appropriate non-MF survival estimators when the true d.g.p.
exhibits no misclassified failures. When the d.g.p. is instead MF exponential, we determine
that (i) the (Bayesian and BFGS) MF survival models again substantially outperform all
non-MF survival models in bias and efficiency and (ii) the Bayesian MF survival models
remain preferable to the BEFGS MF survival models in these contexts. Furthermore, we find
in each relevant comparison that the MF Weibull models exhibit comparable, and at times
superior, performance to the MF exponential models. This suggests that the Weibull MF
model should be preferred over the MF exponential estimator in applied research, given the
former’s added flexibility in situations where one’s hazard rate is non-constant.

Whereas Experiments 2, 4, 6, and 8 employ a MF rate of 5%,> Experiments 9-11 no-
ticeably increase this MF rate above 5%. These latter experiments—which we present in
the Supplemental Appendix—increasingly favor the Bayesian MF Weibull model over the
Bayesian Weibull model as one’s MF rate extends beyond 5%. To illustrate this, we average
the N = 1,000, N = 1,500, and N = 2,000 RMSE results that we obtain from Experiment
1 ( = 0), Experiment 2 (o = 5%), Experiment 9 (o = 8%), Experiment 10 (o = 10%),
and Experiment 12 (o = 15%). We then plot these averaged RMSE values (and their stan-
dard deviations) separately for our Bayesian Weibull and Bayesian-MF Weibull models in
Figures la (3,) and 1b (f;). These Figures demonstrate that both models exhibit compa-

rable RMSEs for Bg and Bl when the d.g.p. is non-MF Weibull. However, as one’s MF' rate

Which we suspect will be most comparable to the types of applications considered below.
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increases, we find that the Bayesian MF Weibull model’s B RMSEs remain effectively flat,
whereas those the Bayesian Weibull dramatically increase. Herein, the Bayesian MF Weibull
already exhibits RMSE’s that are over 7 times smaller than those of Bayesian Weibull when
a = 5%, and these Bayesian MF Weibull RMSEs then become nearly 20 times smaller than
those of the Bayesian Weibull when « is increased to 15%. Hence, Experiments 9-11 further
underscore the preferability of the Bayesian MF Weibull in situations of modest-to-moderate

misclassified failures.

Figure 2: Comparison of Survival Stage RMSEs Under Increasing Misclassified Failure Rates
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3 Empirical Applications

We estimate our Bayesian MF Wewbull model on survival data used in two published stud-
ies in Political Science that employ standard Weibull models. For our first application, we
consider a survival dataset measuring the duration of civil conflicts obtained from a study
published by Buhaug, Gates and Lujala (hereafter Buhaug et al) in 2009. Their paper the-
oretically posits that geographic covariates such as log distance from the civil conflict center
to the capital city (distance to capital (In)) and civil conflicts in border regions (conflict at

border dummy) decreases the hazard of civil war termination or equivalently leads to longer
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civil wars, while higher rebel fighting capacity increases the hazard of civil war failure. Along-
side these assessments, they empirically analyze the effect of the following three covariates
on civil war duration that are studied in the theoretical literature on civil wars. First, follow-
ing Collier, Hoeffler and Soderbom (2004) and Fearon and Laitin’s (2003) theoretical claim,
Buhaug et al assess whether countries with higher GDP per capita at the onset of civil wars
are likely to be associated with a higher hazard of civil war termination (i.e., shorter civil
conflicts). They also test — as suggested by Balcells and Kalyvas (2014) and Straus (2012) —
whether civil war duration has declined following the end of the Cold War which implies that
the post-Cold War era is associated with a higher hazard of civil war failure. Furthermore,
following Cunningham (2006) and Thyne’s (2012) research on domestic institutions and civil
conflict duration, Buhaug et al (2009: 551-554, 563) test whether “higher democracy scores”
at the onset of civil wars are associated with longer civil conflicts.

To statistically assess these theoretical predictions, Buhaug et al use country-level sur-
vival data measuring the duration of civil conflicts (1946-2003) in days as the outcome
variable, which is labeled as civil war duration. These data are obtained from the Upp-
sala/PRIO Armed Conflict Dataset (ACD). Building on extant civil war duration analyses
(e.g., Balch-Lindsay and Enterline 2000; Thyne 2012), Buhaug et al (2009) operationalize
the termination of a civil conflict according to its official end date (or “failure”), which is
based on 24-month spells where the UCDP/PRIO ACD recorded fewer than 25 battle-deaths
per year. That is, civil conflict is coded as “terminated” in the Buhaug et al data when the
number of battle-deaths falls and stays below 25 for at least 24 months. Their civil war du-
ration data have a mean of 2,221 days with a total of 149 civil conflict termination episodes
(Buhaug et al 2009: 556).

Buhaug et al estimate a standard parametric MLE Weibull model on their survival data in
which they include the following covariates listed above that separately assess how geography
and the fighting capacity of rebel groups influence civil war duration: distance to capital(in),

conflict at border, and a binary measure of rebel (group) fighting capacity. Drawing on extant
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research, they also incorporate the following additional covariates: GDP capita at onset (In)
of civil wars, a dummy for post Cold War years, a measure of democracy score at onset of
civil wars, and a Border x distance (In) control.

In a fully specified MLE Weibull model, Buhaug et al (2009: 563) find support for
their predictions that conflict at border and distance to capital(ln) have a reliably negative
(positive) influence on the hazard of civil war failure (civil war duration). Additionally, they
report that the statistical association between GDP capita at onset (In) and the hazard of
civil conflict termination are positive, but unreliable. They, however, find robust support
for the theoretical claims that post Cold War and rebel fighting capacity have a statistically
positive and reliable effect on the hazard of civil war failure therein implying that these
covariates are each associated with shorter civil wars. Democracy score at onset has a
statistically negative and highly reliable effect on the hazard of civil conflict termination in
their MLE Weibull model, as anticipated by Buhaug et al (2009: 563)

Although now standard practice in the civil war literature (Themnér and Wallensteen,
2014; Thyne, 2012), Buhaug et al’s use of an annual 25 battle-deaths threshold over a
24-month period as a criterion to code conflict termination can lead to the inclusion of
misclassified failure cases in data. First, the use of 24-month spells to identify conflict
termination is arguably conservative, especially for lower intensity conflicts in remote or poor
information environments, or in situations where some groups or officials do not recognize
the war as having ended. Such cases where the date of civil conflict termination is ambiguous
are unlikely to capture the “true” termination date, and several entities might argue that
conflict ended in different periods. Take, for instance, the Second Congo War, which officially
ended in 2003. Is the correct termination date July 2003, the month and year during which a
provincial government assumed power? Or is October 2008, the date recorded for termination
of the Second Congo War in the UCDP Conflict Termination Dataset (Kreutz, 2010), more
accurate despite the fact that other key sources (Coghlan et al., 2009) identify battle deaths

to be in the thousands? Or maybe the war never ended, considering that conflict in the
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Democratic Republic of Congo (DRC) still takes the lives of thousands every year (Larmer,
Laudati and Clark, 2013). Without perfect information, the dates used to record civil war
termination are likely to be underestimated at times, leading to misclassified failure cases in
civil war termination datasets such as Buhaug et al’s data.

A second issue is the possibility that different sources may record distinct dates for
civil war termination even though they use the same criterion (e.g., battle-death numbers
threshold) to code the “end” of civil wars. For instance, the UCDP Conflict Termination
Dataset (Kreutz, 2010) used by Buhaug et al (2009) denotes a civil conflict in the state of
Nagaland in India, as beginning in 1992 and experiencing termination in 1997, the first year
during which the number of battle deaths fell below 25. Yet other key sources that use the
same UCDP battle-death threshold criterion emphasize that civil conflict between the Indian
Government and Nagaland’s rebel groups during the 1990s did not “end” in 1997 but rather
persisted into the first decade of the twenty-first century (Shimray 2001). This discrepancy is
not surprising given the subjectivity involved in accurately identifying the number of battle
deaths required to code civil war termination. The Nagaland example in the Buhaug et al
data is not rare. Indeed, Table A.9 in the Supplemental Appendix identifies many additional
terminated civil conflict cases in the Buhaug et al data—including civil wars in other parts
of India, Myanmar, the DRC, and Thailand—that persisted beyond their recorded time.
These examples thus suggest that civil war duration datasets including Buhaug et al’s data
are likely contaminated with misclassified failure cases that have persisted beyond their
observed failure point.

We therefore replicate a key specification from Buhaug et al (2009; Table 1, Column
5) by separately estimating and comparing the results from the following models:(i) our
Bayesian MF Weibull model that (unlike the standard Weibull models) statistically accounts
for misclassified failure cases in Buhaug et al’s civil war duration data, the (ii) standard MLE
Weibull model and (iii) a standard Bayesian Weibull model. Table 3 reports the results

from these models that focuses on the Buhaug et al specification mentioned earlier which
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evaluates the effect of the following variables on civil war duration: GDP capita at onset
(In), the post Cold War dummy, Democracy score at onset, rebel fighting capacity, distance
to capital(In), conflict at border, and Border x distance (In). For the first two models in
Table 3, we estimate a standard Weibull hazard model first via MLE (whose coefficient
estimates are reported in Model 1) and then via Bayesian MCMC (whose posterior mean
estimates are presented in Model 2) to assess the aforementioned specification. Models 3-6 in
Table 3 report the posterior mean estimates with 95% Bayesian Credible Intervals (hereafter,
BCI) obtained from different specifications for four different Bayesian MF Weibull models.
Importantly, recall here that, unlike the standard Weibull model, the Bayesian MF Weibull
estimates the effect of both (i) a series of X covariates on civil war duration, and (ii) a set
of Z covariates on the probability of failure misclassification (denoted «).

We thus first report a baseline Bayesian MF Weibull specification in Model 3 of Table
3. The survival stage in this baseline MF model of civil war duration includes the same
variables used in the Buhaug et al (2009) study, while the misclassification failure probabil-
ity stage (hereafter “misclassification stage”) includes just the intercept. The Bayesian MF
Weibull’s survival stage in Model 4 of Table 3 repeats the survival stage specification outlined
above, but adds a set of theoretically-identified covariates to the MF model’s misclassifica-
tion stage. Here, we first include GDP capita at onset (In) since conflict-afflicted countries
with higher levels of economic development may have greater media attention with respect
to civil war coverage (Collier 2003, Puddephatt 2006). This improves the accuracy of infor-
mation about civil war termination dates as per the UCDP battle deaths criterion, which
reduces the probability of misclassification failure. Next, we include distance to capital (In)
as information about battle related fatalities (needed to code civil war termination) tends to
be inaccurate in civil conflicts fought in remote geographic areas that are far away from the
capital city (Puddephatt 2006). This covariate is thus likely to be positive in the misclassi-
fication stage. We also incorporate conflict at border as researchers argue that governments

in civil war-affected countries tend to misrepresent information about battle-related deaths
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in civil conflicts in their state’s border regions to demonstrate that government forces are
“winning” the civil war (Buhaug and Gates 2002, Lischer 2015). Conflict at border is hence
likely to be positive in the misclassification stage as information about battle-related deaths
might be inaccurate in civil wars that occur in the border zones of conflict-affected states.
The Bayesian MF Weibull’s survival stage in Model 5 (Table 3) also repeats the survival
stage specification used in Buhaug et al (2009), while the model’s misclassification stage
includes the three covariates discussed above and rebel fighting capacity. Finally, Model 6
in Table 3 includes all covariates from the Buhaug et al specification for both the survival
stage and the misclassification stage of the Bayesian MFEF Weibull specification. We use the
slice-sampling (MCMC) algorithm described earlier to estimate all the Bayesian MF Weibull
models, and to this end, we specify the hyperparameters as: a = 1,0 =1, Sg = 1, S, = Ip2,
v = pl and v, = p2.5 We first discuss the Bayesian MF Webiull model’s misclassification
stage and then the model’s survival stage results. The densities (Figure A.12, Supplemental
Appendix) and posterior mean estimates of the misclassification stage covariates show that
conflict at border is consistently positive in the Bayesian MF Weibull’s misclassification stage
in Models 4-6 and this estimate’s 95% Bayesian Credible Intervals (hereafter, BCI) always
excludes zero. The first difference in misclassification probabilities derived from the Bayesian
MF Weibull model’s misclassification stage (Z) covariates in Model 4—illustrated in Figure
3 with 95% BCI—further reveal that increasing the conflict at border dummy from 0 to
1 (here and below, while other covariates are held at their means or modes) increases the
probability of a misclassified war failure by approximately 5.86%. The 95% BCI of this
effect excludes zero which means that it is (as predicted theoretically) reliable to infer that
civil conflicts that occur in the border regions of war-torn countries are more likely to be
misclassified as having been terminated when they (possibly) had not. In line with our
theoretical expectations, the posterior mean estimate and substantive effect of distance to

capital (In) in the misclassification stage (see Figure 3) shows that civil conflicts fought in

5The Bayesian MF Weibull model’s results in Table 3 are based on a set of 50,000 iterations
after 4,000 burn-in scans and thinning of 10.
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Table 3: (Bayesian MF) Weibull Results: Buhaug et al (2009) Application

MLE Weibull ~ Bayesian non-MF Weibull Bayesian MF Weibull

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)
X Covariates (3 Parameters)
Distance to capital (In) -0.325 (0.084) -0.582 (-0.81, -0.327) -4.586 (-7.686, -1.472)  -2.427 (-7.537, 3.082)  -4.971 (-10.136, -0.762)  -3.744 (-8.177, 1.825)
Conflict at border 0.468 (0.200)  -0.727 (-1.27, -0.159) 0.483 (-5.751, 3.548)  -1.923 (-10.627, 4.384)  -3.831 (0.063, -9.865)  -3.272 (-11.524, 2.120)
Border x Distance 0.459 (0.115) 0.769 (0.4, 1.123) 1771 (-4.787, 8.496)  1.256 (-4.756, 9.389) 0.86 (6.120, -2.023)  4.796 (-3.414, 11.308)
Rebel fighting capacity 0.359 (0.183) 0.425 (-0.118, 0.953) 4.11 (-2.684, 8.507) -0.201 (-9.018, 6.764) 1.712 (4.499, -1.570) 6.136 (-0.402, 9.441)
Democracy score at onset -0.588 (0.222) -0.921 (-1.62, -0.247) -1.711 (-9.567, 5.053) -0.614 (-12.377, 7.225) 1.445 (7.201, -2.230) -6.789 (-10.635, -1.687)
GDP capita at onset (In) 0.115 (0.081) 0.047 (-0.194, 0.318)  -7.85 (-12.313, -1.103)  -4.745 (-17.375, -0.544)  -3.161 (-8.031, -0.102)  -6.078 (-11.477, -1.590)
Post-Cold War years 0.547 (0.184) 0.903 (0.382, 1.438) -4.05 (-11.011, 1.487) -0.03 (-8.818, 7.181) -1.228 (-3.87, 1.212) -4.66 (1.261, -13.757)
Constant -3.839 (0.777) -4.407 (-6.83, -2.315) -1.856 (-5.436, 1.009) -0.103 (-7.778, 7.449) 0.522 (-2.011, 3.33) 5.986 (-1.402, 13.605)
Z Covariates (v Parameters)
Distance to capital (In) 0.124 (-0.007, 0.248)  0.068 (-0.071, 0.191) 0.385 (0.190, 0.579)
Conflict at border 0.495 (0.131, 0.86) 0.484 (0.102, 0.858) 0.568 (0.131, 0.969)
Border x Distance -0.582 (-0.874, -0.303)
Rebel fighting capacity -0.538 (-0.903, -0.184) -0.388 (-0.751, -0.03)
Democracy score at onset 0.681 (0.187, 1.185)
GDP capita at onst (In) -0.093 (-0.214, 0.039) -0.748 (-1.081, -0.395) -0.101 (-0.253, 0.052)
Post-Cold War years -0.7 (-1.096, -0.329)
Constant 1.974 (1.807, 2.146) 1.533 (0.382, 2.751) 1.728 (0.885, 2.648) 0.242 (-1.132, 1.657)
DIC -23764.5 -13905.15 -18339.6 -19301.91 -7211.451
AIC 724.779
log likelihood -353.4 581.98 680.531 703.746 629.007 602.347
Observations 1,375 1,375 1,375 1,375 1,375 1,375

Note: Variable coefficients are reported with standard errors clustered by conflict in parentheses for the MLE Weibull model.
Posterior means are reported with 95% credible intervals in parentheses for the Bayesian non-MF and MF Weibull models.

Figure 3: Change in the Predicted Probability of Misclassification
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geographically remote areas are indeed more likely to be misclassified as having failed when
they had not. However, the 95% BCI of this covariate’s mean estimate and substantive effect
in the misclassification stage always includes zero thus indicating that the aforementioned
empirical relationship is unreliable.

In addition, the posterior densities and mean estimate of the misclassification stage co-
variates show that GDP capita at onset (In) is consistently negative in the Bayesian MF
Weibull’s misclassification stage in Models 4-6. The 95% BCI of this covariate’s estimate
excludes zero in some—but includes zero in other—misclassification stage specifications.
Further, Figure 3 shows that increasing GDP capita at onset (In) from 1 standard deviation
(SD) below to 1 SD above its mean decreases the probability of a misclassified war failure
by approximately 3.16%, although the 95% BCI of this effect includes zero. While this
supports our claim that civil wars in more economically developed countries are less likely
to be misclassified as having been terminated when they had not, it also shows that this
empirical association is not reliable. Intuitively, other misclassification stage results show
that rebel fighting capacity and post Cold War dummy are also negatively associated with
the probability of misclassification failure.

We next turn to the (MF) Weibull survival stage results from Table 3. First, the results
of the covariates in the standard MLE and Bayesian non-MF Weibull models are not only
similar but also confirm all the results that Buhaug et al (2009) report. For instance, the
influence of the following three covariates — Distance to capital(ln), Conflict at border and
Democracy score at onset — on the hazard of civil conflict termination is negative and highly
reliable in the standard MLE and Bayesian Weibull models, which mirrors Buhaug et al’s
findings. The estimate of rebel fighting capacity increases the hazard of civil war failure
reliably in the MLE Weibull model, as shown by Buhaug et al (2009: 561). GDP capita
at onset (In) is positive in both the standard MLE and non-MF Bayesian Weibull model
but statistically unreliable. This is identical to Buhaug et al (2009: 563), who find that
although unreliable, higher per capita income at the onset of civil wars is indeed associated

with a higher hazard of civil conflict termination. The positive estimate of the Post-Cold
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War dummy is statistically reliable in the MLE and Bayesian non-MF Weibull models. This
indicates that the hazard of civil war failure has increased or, in other words, the duration of
civil wars has declined in the post Cold War era which is exactly what Buhaug et al (2009)
and Balcells and Kalyvas (2014) find.

However, the Bayesian MF Weibull’s estimates differ substantially from the standard
Bayesian non-MF and MLE Weibull model’s that Buhaug et al (2009) report. To see this,
we focus on the (i) top rows of Models 3-6 in Table 3, (ii) hazard ratio plots of the Bayesian
MF Weibull model’s key survival stage covariates in Figures 4a-4b and (iii) the survival
stage covariates’ posterior densities in Figure A.13 in the Supplemental Appendix. Herein,
the density and posterior mean survival stage estimate of both distance to capital (In) and
conflict at border reveals that each of these two covariates are negatively associated with
the hazard of civil war failure in the MF Weibull models, although this association is unre-
liable since the 95% BCIs of these variables frequently include zero. This result is distinct
from Buhaug et al (2009) who find that the negative association between each of these two
covariates and the hazard of civil war failure is highly robust in their MLE Weibull model.

Next, the density and posterior mean survival stage estimate of log of GDP capita at onset
in the Bayesian MF Weibull specification in Model 3 (where the misclassification stage only
includes the intercept) is negative, specifically -7.85, with a 95% BCI range of [-12.313, -1.103]
that excludes zero. The survival stage estimate of GDP capita (onset) remains negative and
its 95% BCI always excludes zero in the remaining Bayesian MF Weibull models 4-6 in
Table 3 in which the misclassification stage includes covariates. Hence per capita income
at the onset of civil wars has a reliably negative influence on the hazard of civil war failure
in the Bayesian MF Weibull survival stage, which is exactly the opposite of what Buhaug
et al and we find in the standard MLE and Bayesian Weibull model. This suggests that a
possible prolonging effect of GDP per capita on civil war duration may have gone unnoticed

in many past analyses,” which failed to take into account misclassified failure cases (and

"Exceptions include Balcells and Kalyvas (2014), who find that GDP per capita increases civil
war duration (although this result is unreliable in some of their specifications which is distinct from
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these misclassified failure cases’ potential association with low GDP per capita).

Additionally, consider Figure 4a. This figure illustrates hazard ratio plots derived from
the estimate of GDP capita at onset (In) in the (i) Bayesian MF Weibull specification in
Model 4, (ii) standard MLE Weibull specification in Model 1, and (iii) standard Bayesian
Weibull specification in Model 2. Note that a hazard ratio greater (lesser) than one suggests
that this variable increases (decreases) the hazard of civil war termination.We learn from
Figure 4a that increasing GDP capita at onset (In) from 1 SD below to 1 SD above its
mean, while holding the other survival stage covariates at their respective mean, increases
the hazard of civil conflict termination in the standard MLE and Bayesian non-MF Weibull
models. But this effect is unreliable the MLE and Bayesian non-MF Weibull models. Thus,
while there exists a positive association between economic development and the hazard
of civil war failure — as suggested theoretically by Collier, Hoeffler and Séderbom (2004)
— this association is tenuous. In sharp contrast, as shown in Figure 4a, increasing GDP
capita at onset (In) from 1 SD below to 1 SD above its mean decreases the hazard of civil
conflict termination by 84.6% in the Bayesian MF Weibull model and the 95% BCI of this
hazard ratio excludes zero. Hence, although reasonable increases in per capita income at the
outbreak of civil wars increases the hazard of civil war failure in the standard Weibull models,
the same changes in GDP capita at onset (In) in the Bayesian MF Weibull specification leads
to a substantial and reliable decrease in the hazard of civil war termination after misclassified
failures are accounted for.

We turn to analyze another key variable that Buhaug et al (2009) evaluate, namely the
survival stage estimate of post Cold War years. The hazard ratio plot in Figure 4b shows
that increasing the post Cold War dummy from 0 to 1 while holding the other survival
stage covariates at their mean increases the hazard of civil conflict termination substantially
and reliably in the standard MLE Weibull and the non-MF Bayesian Weibull models. This

finding corroborates Balcells and Kalyvas’ (2014) theoretical claim and Buhaug et al’s (2009)

our robust finding for this covariate), as well as Brandt et al (2008), who find that GDP per capita
increases civil war duration for only civil wars ending in government victory specifically.
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Figure 4: Hazard Ratios for GDP/capita at onset and Post-Cold War
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finding that the hazard of civil war failure has increased in the post cold-war period or
equivalently, that the duration of civil wars has declined in the post cold-war era. But in
sharp contrast to the standard Weibull model’s results for this variable, the posterior mean
estimate of post Cold War is negative in the survival stage of all the Bayesian MF Weibull
specifications. Figure 4b shows that increasing the post Cold War dummy from 0 to 1 while
holding the other survival stage covariates at their mean decreases the hazard of civil war
failure by 33.63% in the Bayesian MF Weibull specification; however, the 95% BCI of this
effect includes zero. Table 3 reveals similar contradictory results for several additional key
survival stage covariates from the Buhaug et al (2009) study, including democracy score at
onset and rebel fighting capacity—suggesting that past findings in these regards may have
at least been partly attributable to misclassification in civil war failures, and to associations
between failure misclassification and the variables reviewed here.

Importantly, Deviance Information Criterion (DIC) — which are discussed in more de-
tail in the Supplemental Appendix — also suggest that these alternate Bayesian MF Weibull
results are in fact preferable (in terms of overall fit) to those obtained from the Bayesian
Weibull model reported in Table 3. Moreover, as reported in Table A.10 in the Supplemen-
tal Appendix, the posterior mean estimates of all the key survival stage covariates in the
Bayesian MF Weibull models such as per capita income, post cold war years, and democracy

score in models 3-6 in Table 3 remain robust in an extensive array of additional specifica-
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tions that includes alternative controls in the MF Weibull model’s misclassification stage.
Standard diagnostic checks for the parameters in each Bayesian MF Weibull specification
in Table 3 further suggest that the Markov chain has reached a steady state in each case.
For instance, the trace plots show that the Markov chain has stabilized, has good mixing
and is dense. Autocorrelation plots indicate no high degree of autocorrelation for the pos-
terior samples, implying good mixing.® Hence the plots suggest that the Markov chain has
converged to the desired posterior.

Altogether, comparisons of Table 3’s Weibull and Bayesian MF Weibull models suggest
that the effects of several widely used predictors of civil war duration are sensitive to the
potential misclassification of civil war cases as having failed when in fact they persisted.
After statistically accounting for misclassified failures within one widely used dataset of civil
war duration, we find that theoretical interpretations of some correlates of civil war duration
reverse in sign whereas others change in magnitude and/or become less reliable. These
findings suggest that more attention should be paid to the “fuzziness” of civil war termination
dates in empirical conflict research, and that the MF models proposed above may allow for
one means for analysts to do so. Moreover, the empirical findings from the misclassification
stages of the Bayesian MF Weibull models that we discuss above suggest that the MF hazard
models also allow researchers to assess when failure cases in survival datasets are more likely
to be misclassified, which is both substantively appealing and empirically useful.

Our second application is presented in full in the Supplemental Appendix and focuses on
Reenock, Bernhard and Sobek’s (2007) (hereafter RBS) study of democratic regime survival
for the years 1961-1995. RBS posit that higher levels of deprivation of basic civilian needs
(i.e. food insecurity) increase the prospects of democratic regime breakdown when per capita
income within a given country reaches a certain threshold. They evaluate this moderation
effect by interacting their explanatory variable, basic needs deprivation, with GDP per capita

(logged) in a standard MLE Weibull model whose outcome is the duration of democratic

8 Geweke-Diagnostics also show that the mean estimate of the Markov chain is stable over time.
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regimes (democratic survival). RBS find that the statistical association between basic needs
deprivation X GDP per capita (logged) and democratic survival strongly supports their
expectations. They also find that increasing basic needs deprivation from 1 SD below to
1 SD above its mean in democracies reliably increases the hazard of democratic regime
“failure” when per capita income reaches $2,300 in their sample (RBS 2007, 692).

We contend in the Supplemental Appendix that the criteria that RBS use to code demo-
cratic breakdowns likely means that their data contain some misclassified democratic-regime
failure cases. Indeed, Table A.11 lists numerous examples of recorded democratic-regime
failure in the RBS data that are ambiguous and hence likely misidentified. We thus repli-
cate RBS’ main specification with both a standard non-MF Weibull model and different
specifications of our Bayesian MF Weibull model. Following RBS, the survival stage of the
latter models includes basic needs deprivation x GDP per capita (logged), the individual
components of this interaction term, and a set of controls that affect democratic survival.
The misclassification stage covariates (and their results) in the Bayesian MF Weibull models
applied to the RBS (2007) data are presented in Table A.12 and Figures A.14-A.15, while
the survival stage results from these MF models are presented in Table A.12 and Figure A.16
in the Supplemental Appendix.

In brief, the standard Weibull’s results are identical to RBS’ finding as basic needs de-
privation X GDP per capita (logged) increases the hazard of democratic regime failure in
these models. In sharp contrast, the posterior mean survival stage estimate of basic needs
deprivation x GDP per capita (logged) in the Bayesian MF Weibull models suggest that
this interaction term decreases the hazard of democratic regime failure although the esti-
mate’s 95% BCI includes zero. The marginal effect of this interaction term derived from
the main Bayesian MF Weibull survival stage shows that increasing basic needs deprivation
from 1 SD below to 1 SD above its mean increases the duration (i.e. decreases the hazard)
of democratic regimes by 24.5% when per capita income reaches the $2,300 threshold (the

RBS benchmark) and the 95% BCI of this effect excludes zero. Thus, after statistically
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accounting for misclassified democratic regime-failure cases, the association between basic
needs deprivation and democratic regime failure when income per capita reaches $2, 300 is
the opposite of what RBS find. Diagnostic checks from the Bayesian MF Weibull models
applied to the RBS (2007) data show that the obtained Markov chains are stable, have good

mixing, and have successfully converged to the desired posterior.

4 Conclusion

Event failures in Political Science survival datasets are often imperfectly recorded accord-
ing to crude cutoff criteria or related misreporting processes. Imperfectly recorded event-
failures ensure that some non-censored observations actually persist beyond their recorded
failure in a survival dataset. When this arises, conventional survival models yield biased
estimates. To address this problem, we build on recent work on split population survival
models and develop a new “Misclassified Failure” (MF) split population survival model that
explicitly models the probability of misclassified failure (vs. right censored) events. In doing
so, our model accounts for imperfect detection in failure-events within one’s evaluations of
covariate effects on survival (i.e., duration) processes. As a result, the MF split population
survival model provides accurate estimates of parameter effects when observed event-failures
include cases that in actuality “live on” past their observed-failure point.

We also define this model’s conditional posterior distribution and present a slice sampling
estimation algorithm (i.e., MCMC method) that allows researchers to conduct Bayesian
inference with our model. Here, we provide a dedicated R package for estimating this
Bayesian MF survival model as a complement to this paper. Results from extensive Monte
Carlo experiments and two empirical applications reveal that when some recorded event
failures in survival data have survived past their observed-failure points, our Bayesian MF
model yields estimates that are superior in efficiency and have substantially lower RMSEs
compared to estimates from regular survival models. Our MF duration model provides

researchers with an opportunity to include variables in not only the model’s survival stage
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but also within a stage that models the probability of a misclassified failure. This allows
one to identify the conditions that affect whether a duration case is either more or less likely
to be misclassified as having terminated; potentially providing substantive insights into this
secondary process. For some applications, these insights well help to inform researchers of
problematic coding and data collection decisions with respect to failure misclassification. In
other cases, these insights and the substantive effects derived from the MF duration model
may reveal the theoretical mechanisms that cause political actors to overstate survival-failure
in some circumstances but not others.

Notwithstanding these benefits, the model presented can here be extended in four main
directions. First, our statistical framework can be used to develop the semi parametric Cox
Proportional Hazard [PH] MF model. Although scholars in Comparative Politics and In-
ternational Relations commonly use parametric survival models such as the Weibull model
that we focus on here, Political Scientists also use the Cox PH model for survival analysis.
It is plausible that our parametric MF duration model as well as the techniques developed
for estimating this model could be extended to the Cox PH context. Second, we focused on
two empirical applications in our paper: civil war duration and the survival of democratic
regimes. Yet we mentioned earlier that other survival datasets analyzed by scholars (e.g.,
Cioffi-Revilla and Landman 1999; Cress, McPherson and Rotolo 1997; Box-Steffensmeier,
Radcliffe and Bartels 2005; Linos 2007) could also include imperfectly recorded event-failures
that have survived past their observed failure points. It may thus be worthwhile to apply our
parametric MF duration models to statistically assess these additional duration outcomes
from the American Politics, long-range historical, or institutional compliance literatures.
Third, we can also note that left-censored survival data is a widespread problem in Compar-
ative Politics and International Relations (Carter and Signorino 2013). In light of this, our
MF survival model could also be refined to allow researchers to account for this problem, by
estimating the MF model backwards in time, rather than forwards. Finally, the estimator

presented in this paper can be further extended to develop a statistical model that econo-
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metrically evaluates how spatial factors (e.g., geographic distance or spatial diffusion of the
main outcome variable) can simultaneously affect both the hazard of the event of interest
and probability of misclassified failure or more generally, the probability that the population
of interest emerges from two distinct data generation processes. To this end, scholars have
been developing a new class of Bayesian Mixture Cure models that allow (i) spatial correla-
tion in the survival stage of the cure model (e.g. Banerjee, Carlin and Gelfand 2014) or (ii)
spatial correlations (by including spatial frailty) in both the survival and split population

survival stage of the cure model (Joo and Mukherjee 2018a,b).
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